《精品试题沪科版九年级数学下册第24章圆必考点解析试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试题沪科版九年级数学下册第24章圆必考点解析试卷(含答案解析).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm2、往直径为78cm的圆柱形容器内装入一些
2、水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm3、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对4、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD5、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )ABCD6、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1207、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD8、如图,
3、在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D49、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD10、下列四个图案中,是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_2、如图,在O中,BOC=80,则A=_3、在平面直角坐标系中,A(1,0),B(2,0),OCB=30,D为线段BC的中点,线段AD交线段OC于点E,则AOE面积的最大值为_4、若一次函数ykx+8(k0)的图象与x轴、
4、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90得到BQ,连接OQ,则OQ长的最小值是 _5、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD内接于O,AC是直径,点C是劣弧BD的中点(1)求证:(2)若,求BD2、如图,点A是外一点,过点A作出的一条切线(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)3、阅读下列材料,完成相应任务:如图,是O的内接三角形,是O的直径,平分交O于点,连接,过点作O的切线,交的延长线于点则下面是证明的部分
5、过程:证明:如图,连接,是O的直径,_(1)为O的切线,(2)由(1)(2)得,_平分,_,任务:(1)请按照上面的证明思路,补全证明过程:_,_,_;(2)若,求的长4、下面是“过圆外一点作圆的切线”的尺规作图过程已知:O和O外一点P求作:过点P的O的切线作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交O于A,B两点;(5)作直线PA,PB直线PA,PB即为所求作O的切线完成如下证明:证明:连接OA,OB,OP是C直径,点A在C上OAP=90(_)(填推理的依据)OAA
6、P又点A在O上,直线PA是O的切线(_)(填推理的依据)同理可证直线PB是O的切线5、如图,已知是的直径,是的切线,C为切点,交于点E,平分(1)求证:;(2)求、的长-参考答案-一、单选题1、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键2、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的
7、关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键3、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键4、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重
8、合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】如图,过点C作CTAB于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论【详解】解:如图,过点C作 CTAB 于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,AO=AK,OH=HK=3,OA=OK,OA=OK=AK,OAK=AOK=60,AH=OAsin60=6=3,OHAB,AH=BH,AB=2AH=6,OC+OHCT,CT6+3=9,CT的最大值为9,ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三
9、角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型6、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数7、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾
10、股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键8、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键9、B【分析】根据中心对称图形与
11、轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.10、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项
12、的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键二、填空题1、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为【详解】是一个圆锥在某平面上的正投影为等腰三角形ADBC在中有即由圆锥侧面积公式有故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为2、40度【分析】直接根据圆周角定理即可得出结论【详解】解:与是同弧所对的圆心角与圆周角,故答案为:【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都
13、等于这条弧所对的圆心角的一半3、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可【详解】解:过点作轴,交于点,A(1,0),B(2,0),D为线段BC的中点,轴,设点到轴的距离为,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键4、8【分析】根据一次函数解析式可得:,过点B作轴,过点A作,过点Q作,由
14、旋转的性质可得,依据全等三角形的判定定理及性质可得:MABNBQ,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可【详解】解:函数得:,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,在MAB与NBQ中,MABNBQ,点Q的坐标为,当或时,取得最小值为8,故答案为:8【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键5、在A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与A的位置关系【
15、详解】解:点A的坐标为(4,3),OA=5,半径为5,OA=r,点O在A上故答案为:在A上【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr三、解答题1、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知ABD是等边三角形,进而问题可求解【详解】(1)证明:AC是直径,点C是劣弧BD的中点,AC垂直平分BD,;(2)解:,ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定
16、理、等边三角形的性质与判定及圆周角定理是解题的关键2、见解析【分析】先作线段的垂直平分线确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作3、(1),;(2)【分析】(1)由是O的直径,得到ODB再由为O的切线,得到,即可推出ODA=BDE,由角平分线
17、的定义可得,由,得到,即可证明;(2)在直角ODE中利用勾股定理求解即可【详解】解:(1)如图,连接,是O的直径,ODB(1)为O的切线,(2)由(1)(2)得,ODA=BDE平分,ODA,故答案为: , , ;(2)为的切线,在中,【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质4、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线 【分析】连接OA,OB,根据圆周角定理可知OAP=90,再依据切线的判定证明结论;【详解】证明:连接OA,OB,OP是C直径,点A在C上,OAP=90(直径所对的圆周角是直角),OAAP又点A在O上,直线PA是O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线5、(1)90;(2)AC=,DE=1【分析】(1)如图,可知 (2),可求出的长;,可求出的长【详解】解(1)证明如图所示,连接,是直径,是的切线,平分,(2)解,在中,【点睛】本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点解题的关键在于判定三角形相似
限制150内