难点详解北师大版九年级数学下册第二章二次函数课时练习试题(含详细解析).docx
《难点详解北师大版九年级数学下册第二章二次函数课时练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版九年级数学下册第二章二次函数课时练习试题(含详细解析).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知抛物线经过,若时,则,的大小关系是( )ABCD2、如图,线段AB5,动点P以每秒1个单位长度的速度从点A出
2、发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系3、将抛物线向下平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )ABCD4、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b 3若m2 - bm 2 - b,m ,则点M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 2 - b,得到m2 - bm - 2 +b=0,因
3、式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x10时,xx2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.5、C【分析】由抛物线解析式可求得开口方向、对称轴、顶
4、点坐标,可求得答案【详解】解:,抛物线开口向下,对称轴为x=2,顶点坐标为(2,3),二次函数的图象为一条抛物线,当x2时,y随x的增大而减小,x2时,y随x增大而增大C正确,故选:C【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)6、C【分析】先求出抛物线的对称轴为,然后结合二次函数的开口方向,判断二次函数的增减性,即可得到答案【详解】解:抛物线yax2+4ax+c,抛物线的对称轴为:,当点P1(x1,y1),P2(x2,y2)恰好关于对称时,有,即,x1x2,;抛物线的开口方向没有确定,则需要对a进行讨
5、论,故排除A、B;当时,抛物线yax2+4ax+c的开口向下,此时距离越远,y值越小;a(x1+x24)0,点P2(x2,y2)距离直线较远,;当时,抛物线yax2+4ax+c的开口向上,此时距离越远,y值越大;a(x1+x24)0,点P1(x1,y1)距离直线较远,;故C符合题意;D不符合题意;故选:C【点睛】本题考查了二次函数的性质,二次函数的对称性,解题的关键是熟练掌握二次函数的性质进行分析7、C【分析】由图可知,当与新函数有3个交点时,过新函数的顶点,求出点的坐标,其纵坐标即为所求【详解】解:原二次函数,顶点,翻折后点对应的点为,当直线与新函数的图象有3个公共点,直线过点,此时故选:C
6、.【点睛】本题主要考查了翻折的性质,抛物线的性质,确定翻折后的顶点坐标;利用数形结合的方法是解本题的关键8、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键9、B【分析】根据二次函数的性质,由最大值求出b即可【详解】解:二次函数ya(x+1)2+b(a0),抛物线开口向下,又最大值为1,即b1,b1故选:B【点睛】本题主要考查了二次函数的图象性质,准确分析判断是解题的关键10、C【分析】由抛物线开口向上得a0,由抛物线的对称轴为直线x=-
7、0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断【详解】解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0,-1,2a-b,2a-b-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键二、填空题1、4【分析】根据P(,),Q(,)的纵坐标相等,得出关于抛物线对称轴对称,即可求解【详解】解:P(,),Q(,)两点都在抛物线上,根据纵坐标
8、相等得,P(,),Q(,)关于抛物线的对称轴对称,故答案是:4【点睛】本题考查了二次函数的图象的性质,解题的关键是掌握二次函数的对称性求解2、【分析】根据开口方向、对称轴以及抛物线与y轴的交点可判断,根据对称轴可判断,根据与x轴的交点个数可判断,根据特殊点可判断【详解】解:抛物线开口向下,抛物线与y轴交点在y轴正半轴,正确;抛物线的对称轴为,正确;根据图象可得:抛物线与x轴有两个交点,错误;抛物线的对称轴为x,与时y值相等,当时,当时,正确综上所述:正确的结论为故答案为:【点睛】本题考查了二次函数图象与系数的关系以及二次函数的性质,根据二次函数的图象分析出a、b、c之间的关系是解题的关键3、【
9、分析】二次函数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数4、【分析】根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式当时,直线解析式即为,即可求出此时的坐标联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 难点 详解 北师大 九年级 数学 下册 第二 二次 函数 课时 练习 试题 详细 解析
限制150内