《难点详解沪科版九年级数学下册第25章投影与视图专项训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第25章投影与视图专项训练试题(含答案解析).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第25章投影与视图专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得
2、到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个2、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD3、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A俯视图不变,左视图不变B主视图改变,左视图改变C
3、俯视图改变,主视图改变D主视图不变,左视图改变4、如图所示的几何体的主视图是()ABCD5、如图,该几何体的主视图是( )ABCD6、下面的三视图所对应的几何体是()ABCD7、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()ABCD8、下列几何体中,俯视图为三角形的是( )ABCD9、如图所示的几何体,它的左视图是()ABCD10、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数
4、最少是_2、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值_3、用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_个小立方体,最多需要_个小立方体4、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是_5、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是_三、解答题(5小题,每小题10分,共计50分)1、一个几何体的三个视图如图所示(单位:cm)(1)写出这个几何体的名称: ;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积2、如图,由10个同样大小的小正方体搭成的
5、几何体(1)请在网格中分别画出几何体的主视图和俯视图;(画图用2B铅笔加黑加粗)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多还可以再添加 个小正方体3、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图 4、根据要求回答以下视图问题:(1)如图,它是由5个小正方体摆成的一个几何体,将正方体移走后,新几何体与原几何体相比, 视图没有发生变化;(2)如图,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);(3)如图,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,
6、请在网格纸中画出该几何体的左视图(请用斜线阴影表示)5、已知下图为一几何体从三个方向看到的形状图;(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积(结果保留)-参考答案-一、单选题1、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面
7、,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC60(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5
8、条棱连接是解题关键2、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键3、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键4、B【分析】根据主视图即从物体的正面观察进而得出答案【详解】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:【点睛】本题主要考查了简单组
9、合体的三视图,正确把握观察角度是解题关键5、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键6、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状7、C【分析】
10、根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图8、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从
11、视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力9、C【分析】根据几何体的左面是一个圆环即可得左视图【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线故选:C【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键10、A【分析】从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.【详解】解:从左边看过去:可以看到上下两个宽度相同的长方形,所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,故选A
12、【点睛】本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.二、填空题1、4【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解【详解】解:由主视图,左视图画出几何体,如图:2、【分析】观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值【详解】解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是
13、a,则底面边长为a,依题意有a23=12,解得a=故答案为:【点睛】此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长3、7, 10 【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+27个,至多需要小正方体木块的个数为:5+510个,故答案为:7,10【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查
14、4、13【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案【详解】综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13 故答案为:13【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键5、【分析】根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可【详解】解:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,圆锥的
15、母线长m ,圆柱部分的侧面积,圆锥的侧面积,这个几何体的侧面积,故答案为:【点睛】本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体三、解答题1、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可(1)这个立方体的三视图都是长方形,这个立方体是长方体或四棱柱(2)由三视图知该长方体的表面积:(3)(34)4+(33)2=66(cm2)【点睛】本题考查了由立体图形的三视图确定立体图形的形状;根据边长
16、求表面积大小解题的关键是要有空间想象能力长方体有六个面,算表面积时不要遗漏2、(1)见解析;(2)3【分析】(1)根据题意由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;俯视图有3列,每列小正方数形数目分别为3,2,1据此可画出图形;(2)由题意可知要保持主视图和俯视图不变,可往第1列前面的2个几何体上各放2个和1个小正方体,即可得出答案【详解】解:(1)如图所示:;(2)保持这个几何体的主视图和俯视图不变,那么最多还可以再添加3个小正方体故答案为:3【点睛】本题考查简单组合体的三视图的画法要掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用
17、实线表示,看不到的用虚线表示3、见解析【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可【详解】解:如图所示:【点睛】本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.4、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可(1)将正方体移走后,新几何体与原几何体相比主视图没有变化,如图,故答案为:主(2)图的主视图如图,(3)图的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键5、(1)圆柱体;(2)见解析;(3)【分析】(1)根据三视图的特征即可得出几何体;(2)根据圆柱体的特征,侧面展开为一个长方形,底面为两个圆,即可画出;(3)根据三视图可得:展开图中圆的直径为8,长方形的长为16,根据圆柱表面积的计算方法即可求得结果【详解】解:(1)根据题目中已知的三视图符合圆柱体的三视图特征,故这个几何体为圆柱;(2)表面展开图如图所示:(3)展开图圆的周长为:;展开图圆的面积为:;这个几何体的表面积为:,这个几何体的表面积为【点睛】题目主要考查三视图、几何体的侧面展开图及几何体的表面积计算方法,理解、看懂三视图是解题关键
限制150内