最新人教版九年级数学下册第二十八章-锐角三角函数专题训练试题(含解析).docx
《最新人教版九年级数学下册第二十八章-锐角三角函数专题训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十八章-锐角三角函数专题训练试题(含解析).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则
2、的值是( )ABCD2、如图,PA、PB分别切O于A,B,APB60,O半径为2,则PB的长为( )A3B4CD3、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对4、cos60的值为()ABCD15、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里6、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD7、计算的值等于( )AB1C3D8、如图,河坝横断面迎水坡的坡比为:,坝高m
3、,则的长度为( )A6mBmC9mDm9、如图所示,点C是O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A150,B150,2C120,D120,210、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15时,如图,在RtABC中,
4、C90,ABC30,延长CB至D,使BDAB,连接AD,得D15,所以tan152类比这种方法,计算tan22.5的值为 _3、如图,中,点D、点E分别在AB、AC上,连接CD、ED,则_4、如图, 在 中, 是斜边 上的中线, 点 是直线 左侧一点, 联结 , 若 , 则 的值为_5、如图,在矩形ABCD中,点E在边AB上,BEC与FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点若BMBE,MG2,则BN的长为 _,sinAFE的值为 _三、解答题(5小题,每小题10分,共计50分)1、定义:如果一个三角形一条边上的高与这条边的比值叫做这
5、条边所对角的准对(记作qad)如图1,在ABC中,AHBC于点H,则qadBAC当qadBAC时,则称BAC为这个三角形的“金角”已知在矩形ABCD中,AB3,BC6,ACE的“金角”EAC所对的边CE在BC边上,将ACE绕点C按顺时针方向旋转(090)得到ACE,AC交AD边于点F(1)如图2,当45时,求证:ACF是“金角”(2)如图3,当点E落在AD边上时,求qadAFC的值2、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60,看雕塑底部C的仰角为45,求雕塑CD的高度(最后结果精确到0.1米,参考数据:)3、如图,在ABC中,ACB90,AC
6、4cm,BC3cm,动点P从点A出发,以每秒2cm的速度沿折线ABBC向终点C运动,同时动点Q从点C出发,以每秒1cm的速度向终点A运动以PQ为底边向下作等腰RtPQR,设点P运动的时间为t秒(0t4)(1)直接写出AB的长;(2)用含t的代数式表示BP的长;(3)当点R在ABC的内部时,求t的取值范围4、如图1,在中,(1)求的长;(2)如图2,点P沿线段从B点向C点以每秒的速度运动,同时点Q沿线段向A点以每秒的速度运动,且当P点停止运动时,另一点Q也随之停止运动,若P点运动时间为t秒若时,求证:;并求此时t的值点P沿线段从B点向C点运动过程中,是否存在t的值,使的面积最大;若存在,请求出t
7、的值;若不存在,请说明理由5、如图,等腰RtABC中,ABAC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得CDBE连接DE,以D点为中心,将线段DE顺时针旋转90得到线段DF,连接线段EF,过点D作射线DRBC交射线BA于点R,连接DR,RF(1)依题意补全图形;(2)求证:BDERDF;(3)若ABAC2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有BPF为定值,并证明 -参考答案-一、单选题1、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线y
8、k1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标2、C【分析】根据题意连接OB、OP,根据切线长定理即可求得BPO=APB,在RtOBP中利用三角函数即可求解【详解】解:连接OB、OP,PA、PB是O的切线,APB60,OBP=90,BPO=APB=30,O半径为2,即,,.故选:C.【点睛】本题考查切线的性质定理以及三角函数,根据题意正确构造直角三角形
9、是解题的关键3、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键4、C【分析】根据特殊角的余弦值即可得【详解】解:,故选:C【点睛】本题考查了特殊角的余弦,熟记特殊角(如)的余弦值是解题关键5、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶
10、的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键6、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.7、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角
11、的三角函数值,正确记忆相关数据是解题的关键8、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键9、D【分析】观察图象可得:y的最大值为4,即BC的最大值为4,当x0时,y2,即AB2,如图,点C是的中点,连接OC交AB于点D,则OCAB,ADBD,AOB2BOC,利用三角函数定义可得BOC60,即可求得答案【详解】解:由函数图象可得:y的最大值为4,即BC的最大值为4,O的直径为4,OAOB2,观察图象,可得当x0时,y2,AB2,如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 九年级 数学 下册 第二 十八 锐角三角 函数 专题 训练 试题 解析
限制150内