精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx
《精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切2、
2、下列各点中,关于原点对称的两个点是()A(5,0)与(0,5)B(0,2)与(2,0)C(2,1)与(2,1)D(2,1)与(2,1)3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的4、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米5、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定6、下面的图形中既是轴对称图形又是中心对称图形的是( )
3、ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD8、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm9、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D12010、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜
4、(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、如图,在RtABC,B=90,AB=BC=1,将ABC绕着点C逆时针旋转60,得到MNC,那么BM=_3、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58,则ACB的大小是_4、一个五边形共有_条对角线5、如图,在O中,AB10,BC12,D是上一点,CD5,则AD的长为_三、解答题
5、(5小题,每小题10分,共计50分)1、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版阿基米德全集第一题就是阿基米德折弦定理阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦), 是的中点,则从向所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接和是的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于,为上
6、一点,于点,则的周长是_2、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)3、如图,AB是O的直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长4、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,
7、都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等由圆周角定理,可以得到以下推论:推论1 90的圆周角所对的弦是直径(如图)(推论证明)已知:ABC的三个顶点都在O上,且ACB90 求证:线段AB是O的直径 请你结合图写出推论1的证明过程(深入探究)如图,点A,B,C,D均在半径为1的O上,若ACB90,ACD60则线段AD的长为 (拓展应用)如图,已知ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE 若AB,则DE的长为 5、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交
8、PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,当PAC与AOD的一个内角相等时,求所有满足条件的AP的长-参考答案-一、单选题1、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.2、D【分
9、析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:A、(5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(2,1)与(2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r
10、,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键4、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点
11、B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr6、A【详解】解:A、既是轴对称
12、图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试卷 沪科版 九年级 数学 下册 24 定向 攻克 答案 详解
限制150内