精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评试题(含答案及详细解析).docx
《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评试题(含答案及详细解析).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果线段能构成直角三角形,则它的比可能是( )ABCD2、有下列四个命题是真命题的个数有( )个垂直于同一条直
2、线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;三边长为,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D43、如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处,若AB3,AD5,则EC的长为( )A1BCD4、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD2085、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米6、如图,“赵爽弦图”是吴国的赵爽创制的以直角三角形的斜
3、边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,则阴影部分的面积是( )A169B25C49D647、如图,在RtABC中,ACB90,分别以AB,AC,BC为斜边作三个等腰直角ABD,ACE,BCF,图中阴影部分的面积分别记为S1,S2,S3,S4,若已知RtABC的面积,则下列代数式中,一定能求出确切值的代数式是()AS4BS1+S4S3CS2+S3+S4DS1+S2S38、有下列条件:;,其中能确定是直角三角形的是( )ABCD9、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B
4、4,5,6C5,12,13D13,14,1510、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是( )A32mB3mC2mD25m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,直角中,从直角三角形两个锐角顶点所引的中线的长,则斜边AB之长为_2、如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是_3、在ABC中,ABAC12,A30,点E是AB中点,点D在AC上,DE3,将AD
5、E沿着DE翻折,点A的对应点是点F,直线EF与AC交于点G,那么DGF的面积_4、如图,湖面上有一朵盛开的红莲,它高出水面30cm大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是_cm5、如图,已知RtABC中,ACB90,AC3,BC4,点P是BC边上的一个动点,点B与B是关于直线AP的对称点,当CPB是直角三角形时,BP的长_三、解答题(5小题,每小题10分,共计50分)1、如图,在一条绷紧的绳索一端系着一艘小船河岸上一男孩拽着绳子另一端向右走,绳端从移动到,同时小船从移动到,且绳长始终保持不变、三点在一条直线上,回答下列问题:(1)根据题意可知:
6、 (填“”、“”、“”)(2)若米,米,米,求小男孩需向右移动的距离(结果保留根号)2、如图直角三角形纸片中,C90,AB10,BC8,AC6,沿点B的直线折叠这个三角形,使点C在AB边上的点E处,折痕为BD(1)求ADE的周长;(2)求DE的长3、如图,在ABC中,ABAC,D是BC中点,AC的垂直平分线交AC、AD、AB于点E、F、G,连接CF,BF(1)点F到ABC的边_和_的距离相等(2)若AF3,BAC45,求BFC的度数和BC的长4、如图所示,ABC的顶点分别为A(4,5),B(3,2),C(4,1)(1)作出ABC关于x轴对称的图形A1B1C1;(2)在图中作出ABC的BC边上的
7、高;(3)若AC10,求ABC的AC边上的高5、如图,在矩形ABCD中,AD10,AB6E为BC上一点,ED平分AEC,求:点A到DE的距离-参考答案-一、单选题1、B【分析】根据勾股定理的逆定理,得:要能够组成一个直角三角形,则三边应满足:两条较小边的平方和等于最大边的平方【详解】解:A、1222542,故不是直角三角形故选项错误;B、52122169132,故是直角三角形,故选项正确;C、12321052,故不是直角三角形故选项错误;D、32429162572,故不是直角三角形故选项错误故选:B【点睛】考查了勾股定理的逆定理,要求能够熟练运用勾股定理的逆定理来判定一个三角形是否为直角三角形
8、2、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断即可【详解】:在同一平面内,垂直于同一条直线的两条直线互相垂直,故错误;:有一个角为的等腰三角形是等边三角形,故正确;:,边长为,3的三角形为直角三角形,故正确;:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故正确;综上是真命题的有3个;故选:C【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键3、D【分析】由翻折可知:ADAF5DEEF,设ECx,则DEEF3x在RtECF中,利用勾股定理构建方程即可解决问题【详解】解:四边
9、形ABCD是矩形,ADBC5,ABCD3,BBCD90,由翻折可知:ADAF5,DEEF,设ECx,则DEEF3x在RtABF中,BF4,CFBCBF541,在RtEFC中,EF2CE2CF2,(3x)2x212,x,EC故选:D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键4、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查
10、二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键5、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理6、C【分析】先利用勾股定理求出,再利用大正方形的面积减去四个全等直角三角形的面积即可得【详解】解:,则阴影部分的面积是,故选:C【点睛】本题考查了勾股定理、全等三角形的性质,熟练掌握勾股定理是解题关键7、A【分析】设AC=a,BC=b,由勾股定理分别求出AE、EC、CF、BF、AD、BD、ED、DC的值,再
11、根据三角形面积逐项判断即可【详解】解:设AC=a,BC=b,SABC=ab,AB=,在等腰直角三角形中,AE=EC=,CF=BF=,AD=BD=,在RtAED中,ED=,DC=EC-ED=,A:S4=AEED=ba=ab=ab=SABC,已知RtABC的面积,可知S4,故S4能求出确切值;B:设AC与BD交于点M, 则S3+SADM=SADC=CDAE=(a-b)a=,又S1+SADM=SADB=AD2=,(S1+SADM)-(S3+SADM)=S1-S3=-=,则S1-S3与b有关,求不出确切值:C:设AC交BD于点M,则SBFD=FDBF=ab=,SADM+S3=(a-b)a=(a2-ab
12、SBCM+S3=SBCD=CDBF=(a-b)b=(ab-b2),SADM+S1=SADB=(a2+b2),SBCM+S1=SABC,S2=BF2=,S2+S3+S4=S梯形AEFB-SABD-SABC+S1,S2+S3+S4=S1S1无法确定,无法确定C;D:由B选项过程得S1-S3=,又S2=b2,得到:S1+S2-S3=b2+ab=b2+SABC,此时S1+S2-S3与b有关,无法求出确切值故选:A【点睛】本题主要考查勾股定理和直角三角形面积公式,关键是对知识的掌握和运用8、C【分析】由题意根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案【详解】解:由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2021 2022 学年 人教版 八年 级数 下册 第十七 勾股定理 定向 测评 试题 答案 详细
链接地址:https://www.taowenge.com/p-28214631.html
限制150内