《平面向量复习讲义.doc》由会员分享,可在线阅读,更多相关《平面向量复习讲义.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面向量复习一向量有关概念:1向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。2零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);4相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向量平行.注:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线
2、, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;6相反向量:长度相等方向相反的向量叫做相反向量.的相反向量是.【练习】1、下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形.(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_二向量的表示方法:1几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2符号表示法:用一个小写的英文字母来表示,如,等;3坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐
3、标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。三平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。ABCDEF【练习】1、若,如何用,表示?2、下列向量组中,能作为平面内所有向量基底的是 A。 B。 C. D。 3、已知分别是的边上的中线,且,则可用向量表示为_ (答:);4、在平行四边形ABCD中,点E和F分别是边CD和BC的中点,且mn,其中m,nR,则mn 。5、在边长为2的菱形ABCD中,BAD60,E为CD中点,AE与BD相交于点F,(1)用,表示.(2)求出四实数与向量的积:实数与向量
4、的积是一个向量,记作,它的长度和方向规定如下:当0时,的方向与的方向相同,当0时,的方向与的方向相反,当0时,,注意:0。五平面向量的数量积:1两个向量的夹角:对于非零向量,,作,称为向量,的夹角,当0时,,同向,当时,反向,当时,,垂直.2平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量.如【练习】1、ABC中,,则_(答:9);2、已知,与的夹角为,则等于_(答:1);3、已知,则等于_(答:);4、已知是两个非零向量,且,则的夹角为_(答:)3在上的投影为,它
5、是一个实数,但不一定大于0。练习:已知,且,则向量在向量上的投影为_(答:)4的几何意义:数量积等于的模与在上的投影的积.5向量数量积的性质:设两个非零向量,,其夹角为,则:;当,同向时,特别地,;当与反向时,;当为锐角时,0,且不同向,是为锐角的必要非充分条件;当为钝角时,0,且不反向,是为钝角的必要非充分条件;非零向量,夹角的计算公式:;。1、已知,如果与的夹角为锐角,则的取值范围是_(答:或且);2、已知A(1,2),B(2,3),C(-2,5),则ABC为( )A。直角三角形 B.锐角三角形 C.钝角三角形 D。不等边三角形3、已知的面积为,且,若,则夹角的取值范围是_(答:);六向量
6、的运算:1几何运算:向量加法:利用“平行四边形法则进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。【练习】1、化简:_;_;_2、若正方形的边长为1,,则_2坐标运算:设,则:向量的加减法运算:,。实数与向量的积:。若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。【练习】1、设,且,则C、D的坐标分别是_ 2、已知点,,若,则当_时,点P在第一、三象限的角平分线上3、已知,则 平面向量数量积:。
7、如1、已知向量(sinx,cosx), (sinx,sinx), (1,0)。(1)若x,求向量、的夹角;(2)若x,函数的最大值为,求的值向量的模:.如1、已知均为单位向量,它们的夹角为,那么_(答:);2、(2009年广东卷)一质点受到平面上的三个力,,(单位:牛顿)的作用而处于平衡状态已知成角,且,的大小分别为和,则的大小为 3、已知共面向量,均为单位向量,它们的夹角两两相同,求的值。两点间的距离:若,则。七向量的运算律:1交换律:,,;2结合律:,;3分配律:,。练习:下列命题中: ; ; ; 若,则或;若则;;;.其中正确的是_注:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法不满足结合律,即,为什么?八向量平行(共线)的充要条件:0.【练习】1、若向量,当_时与共线且方向相同2、已知,且,则x_3、设,则k_时,A,B,C共线九向量垂直的充要条件: 。1、已知,若,则 2、已知向量,且,则的坐标是_ 十一、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似)。4
限制150内