《真题解析2022年中考数学五年真题汇总-卷(Ⅲ)(含答案解析).docx》由会员分享,可在线阅读,更多相关《真题解析2022年中考数学五年真题汇总-卷(Ⅲ)(含答案解析).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学五年真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算中,正确的是( )ABCD2、无论a取什么值时,下列分式总有意
2、义的是( )ABCD3、计算3.14-(-)的结果为() A6.28B2C3.14-D3.14+4、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )ABCD5、若分式有意义,则的取值范围是( )ABCD6、邢台市某天的最高气温是17,最低气温是2,那么当天的温差是( )A19B-19 C15D-157、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个设甲种陀螺单价为x元,根据题意列方程为( )ABCD8、已知ab,则下列不等式中不正确的是()A2a2bBa5b5C2a2bD9、在中,那么的值等于( )ABCD10、
3、某农场开挖一条480m的渠道,开工后,每天比原计划多挖20m,结果提前4天完成任务,若设原计划每天挖xm,那么所列方程正确的是( )A= 4B= 20C= 4D= 20第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 线 封 密 内 号学级年名姓 线 封 密 外 1、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是_2、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_3、已知与互为相反数,则的值是_4、的最简公分母是_5、双曲线,当时,随的增大而减小,则_三、解答题(5小题,每小题10分,共计50分)1、某公司生产A型活动板房成本是每个425元图表示A型
4、活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米(1)按如图所示的直角坐标系,抛物线可以用表示直接写出抛物线的函数表达式 (2)现将A型活动板房改造为B型活动板房如图,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户每平方米的成本为50元已知GM=2米,直接写出:每个B型活动板房的成本是 元(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场信息,这样的B型活动板房公司每月最多能生产个,若以单价元销售B型活动板房,每月能售出个;若单价每降低元,每月
5、能多售出个这样的B型活动板房不考虑其他因素,公司将销售单价(元)定为多少时,每月销售B型活动板房所获利润(元)最大?最大利润是多少?2、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得 ,则称点P是“点M到点N的k倍分点”例如:如图,点Q1,Q2,Q3在同一条直线上, Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的 倍分点,点Q1是点Q3到点 Q2的3倍分点 已知:在数轴上,点A,B,C分别表示-4,-2,2(1)点B是点A到点C的_倍分点,点C是点B到点A的_倍分点;(2)点B到点C的3倍分点表示的数是_;(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的
6、取值范围3、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D(1)求该抛物线的表达式及点C的坐标;(2)联结BC、BD,求CBD的正切值;(3)若点P为x轴上一点,当BDP与ABC相似时,求点P的坐标4、如图,将边长为4的正方形纸片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合), 线 封 密 内 号学级年名姓 线 封 密 外 连接AM,折痕EF分别交AD、BC、AM于点E、F、H,边AB折叠后交边BC于点G(1)求证:EDMMCG;(2)若DMCD,求CG的长;(3)若点M是边CD上的动点,四边形CDEF的面积S是否存在
7、最值?若存在,求出这个最值;若不存在,说明理由5、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90得到图形,那么图形称为图形D关于点P的“垂直图形”已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点(1)请写出:点的坐标为_;点的坐标为_;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为_-参考答案-一、单选题1、A【分析】根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项.【详解】A选项,幂的乘方,底数不变,指数相乘,所以A选项正确
8、.B选项,同底数幂相乘,底数不变,指数相加,所以B选项错误.C选项,合并同类项,字母和字母指数不变,系数相加,所以C选项错误.D选项,积的乘方,积中每一个因式分别乘方,所以D选项错误.故选A【点睛】整式计算基础题型,掌握运算法则,熟练运用.2、D【分析】根据分式有意义的条件是分母不等于零进行分析即可【详解】解:A、当a0时,分式无意义,故此选项错误;B、当a1时,分式无意义,故此选项错误;C、当a1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 故选D【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是
9、分母不等于零3、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解: 3.14-(-)= 3.14+故选:D【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键4、A【分析】根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D【详解】解:A当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;B由旋转可知OC与OC是对应线段,由旋转性质可得OC=OC,故选项B正确,不符合题意;C因为、都是旋转角,由旋转性质可得,故选项C正确,不符合
10、题意;D由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意故选择A【点睛】本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键5、A【解析】试题解析:根据题意得:3-x0,解得:x3.故选A.考点:分式有意义的条件.6、A【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解:17-(-2)=17+2=19故选A【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键7、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种 线 封 密
11、 内 号学级年名姓 线 封 密 外 可多买40个”可得方程【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程8、C【解析】【分析】根据不等式的性质分别对每一项进行分析,即可得出答案【详解】Aab,根据不等式两边同时加上2,不等号方向不变,2a2b,正确;Bab,根据不等式两边同时加5,不等号方向不变,a5b5,正确;Cab,根据不等式两边同时乘以2,不等号方向改变,2a2b,本选项不正确;Dab,根据不等式两边同时乘以,不等号方向不变,正确故选C【点睛】本
12、题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变9、A【解析】【分析】根据A+B=90得出cosB=sinA,代入即可【详解】C=90,sinA=又A+B=90,cosB=sinA=故选A【点睛】本题考查了互余两角三角函数的关系,注意:已知A+B=90,能推出sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB10、C【分析】设原计划每天挖xm,根据结果提前4天完成任务列方程即可【详解】解:设原
13、计划每天挖xm,由题意得= 4故选C【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了列分式方程解实际问题的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤二、填空题1、(每两个3之间依次多一个“1”),【分析】无理数:即无限不循环小数,据此回答即可【详解】解:,无理数有:(每两个3之间依次多一个“1”),故答案为:(每两个3之间依次多一个“1”),【点睛】此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,(每两个之间一次多个)等形式2、三角形的稳定性【详解】一扇窗户打开后,用窗钩可将其固定,这里所运用的几
14、何原理是三角形的稳定性故应填:三角形的稳定性3、【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可【详解】解:与互为相反数,+=0, 故答案为:【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键4、【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母【详解】解:的分母分别是xy、4x3、6xyz,故最简公分母是故答案为【点睛】本题考查了最简公分母的定义及求法通常取各分母系数的最小公倍数与字母因式
15、的最高次幂的积作 线 封 密 内 号学级年名姓 线 封 密 外 为公分母,这样的公分母叫做最简公分母一般方法:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂5、【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍【详解】根据题意得:,解得:m=2故答案为2【点睛】本题考查了反比例函数的性质对于反比例函数y=,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限
16、内,函数值y随自变量x增大而增大三、解答题1、(1)(2)500(3)公司将销售单价n定为620元时,每月销售B型活动板房所获利润w最大,最大利润是19200元【分析】(1)根据题意,待定系数法求解析式即可;(2)根据(1)的结论写出的坐标,进而求得,根据矩形的面积公式计算,进而求得每个B型活动板房的成本;(3)根据利润等于单个利润乘以销售量,进而根据二次函数的性质求得最值即可(1)长方形的长,宽,抛物线的最高点到的距离为,由题意知抛物线的函数表达式为,把点代入,得,该抛物线的函数表达式为故答案为:(2),当时,每个B型活动板房的成本是(元)故答案为:500 线 封 密 内 号学级年名姓 线
17、封 密 外 (3)根据题意,得, 每月最多能生产个B型活动板房,解得, ,时,随的增大而减小,当时,有最大值,且最大值为 答:公司将销售单价定为元时,每月销售B型活动板房所获利润最大,最大利润是元【点睛】本题考查了二次函数的应用,二次函数的性质,掌握二次函数的性质是解题的关键2、(1);(2)1或4(3)-3x5【分析】(1)根据“倍分点”的定义进行判断即可;(2)根据“倍分点”的定义进行解答;(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;(1)解:由题意得,AB=2,BC=4,AC=6AB=BC,BC=AC点B是点A到点C的倍分点,点C是点B到点A的倍分点;
18、故答案为:;(2)解:设3倍分点为M,则BM=3CM,若M在B左侧,则BMCM,不成立;若M在BC之间,则有BM+CM=BC=4,BM=3CM4CM=4,CM=1M点为1;若M在C点右侧,则有BC+CM=BMBM=3CM,BC=4CM=2所以M点为4综上所述,点B到点C的3倍分点表示的数是1或4;故答案为:1或4(3)解:当2倍分点为B时,x取得最小值, 线 封 密 内 号学级年名姓 线 封 密 外 此时AB=2(-2-x)=2解得:x=-3当2倍分点为C点且D点在C点右侧时,x取得最大值此时AC=2(x-2)=6解得x=5所以-3x5;【点睛】本题主要考查两点间的距离,一元一次方程的应用,注
19、意分类讨论的思想是解题的关键3、(1),点C的坐标为(0,-3)(2)(3)(-3,0)或(-,0)【分析】(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;(2)先求B、C、D三点坐标,再求证BCD为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可(1)解:(1)将A(-1,0)、B(3,0)代入,得 解得: 所以, 当x=0时,点C的坐标为(0,-3)(2)解:连接CD,过点D作DEy轴于点E,点D的坐标为(1,-4) B(3,0)、C(0,-3)、D(1,-4),E(0,-4),OB=OC=3,CE=DE=1,BC=,
20、DC=,BD= BCD=90 tanCBD= (3)解:tanACO=,ACO=CBD 线 封 密 内 号学级年名姓 线 封 密 外 OC =OB,OCB=OBC=45ACO+OCB =CBD+OBC即:ACB =DBO 当BDP与ABC相似时,点P在点B左侧(i)当时,BP=6P(-3,0) (ii)当时,BP=P(-,0) 综上,点P的坐标为(-3,0)或(-,0)【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键4、(1)见解析(2)2(3)存在,10【分析】(1)由正方形的性质得,故,由折叠的性质得,故,推出,故可证;(2)由,得,设,则,由勾股定理即可求出的值,即可求出,由相似
21、三角形的性质即可得出的长;(3)过点作于,根据证明,由全等三角形的性质得,设,由勾股定理求出、关系,由化为二次函数即可求出最值(1)四边形是正方形,正方形沿Z折叠,;(2)正方形的边长为4,设,则, 线 封 密 内 号学级年名姓 线 封 密 外 由勾股定理得:,解得:,即,解得:;(3)如图,过点作于,四边形是矩形,由折叠的性质可得:,设,即,当时,有最大值为10【点睛】本题考查几何综合题,主要涉及到折叠的性质,正方形的性质,相似三角形性的判定与性质,全等三角形的判定与性质以及二次函数最值问题,属于中考压轴题,掌握相关知识点间的应用是解题的关键5、(1)(1,2);(1,0)(2)(3) 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案(1)解:根据题意作下图:根据旋转的性质得:,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式
限制150内