精品试卷沪科版九年级数学下册第24章圆同步训练试卷(无超纲带解析).docx
《精品试卷沪科版九年级数学下册第24章圆同步训练试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆同步训练试卷(无超纲带解析).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,都是上的点,垂足为,若,则的度数为( )ABCD2、如图,在ABC中,CAB=64,将ABC在平面内绕点A旋转到
2、ABC的位置,使CCAB,则旋转角的度数为( )A64B52C42D363、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD4、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个5、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD6、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3
3、D47、如图,是的直径,、是上的两点,若,则( )A15B20C25D308、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D9、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D7610、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,与x轴交于、两点,点P是y轴上的一个动点,PD切于点D,则ABD的面积的最大值是_;线段PD的最小值是_2、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,
4、方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺3、如图,在O中,BOC=80,则A=_4、一个正多边形的中心角是,则这个正多边形的边数为_5、在平面直角坐标系中,已知点与点关于原点对称,则_,_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,将ABC绕点A顺时针旋转90(1)画出旋转后的AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转
5、过程中扫过的面积2、在平面直角坐标系xOy中,的半径为2点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”(1)如图,点A,B,C,D横、纵坐标都是整数在点B,C,D中,与点A组成的“成对关联点”的点是_;(2)点在第一象限,点F与点E关于x轴对称若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围3、如图,在中,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E(1)求证:BO平分;(
6、2)若,求BO的长4、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N求证:(1)当时,求的值;(2)当点E在线段AB上,如果,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值5、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长-参考答案-一、单选题1、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对
7、的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键2、B【分析】先根据平行线的性质得ACC=CAB=64,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64,CAC=180-ACC-ACC=180-264=52,旋转角为52故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋
8、转中心所连线段的夹角等于旋转角;旋转前、后的图形全等3、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.4、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧
9、;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键5、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键6、B【分析】由题意以及旋转的
10、性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形7、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周
11、角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键8、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键9、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试卷 沪科版 九年级 数学 下册 24 同步 训练 无超纲带 解析
限制150内