知识点详解人教版八年级数学下册第十七章-勾股定理专项测试试题(精选).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《知识点详解人教版八年级数学下册第十七章-勾股定理专项测试试题(精选).docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十七章-勾股定理专项测试试题(精选).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,A90,AB6,BC10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PAPB的最小
2、值是( )A6B8C10D122、如图,在44的正方形网格中,每个小正方形的边长均为1,点A,B,C都在格点上,ADBC于点D,则AD的长为()AB2CD33、如图,在中,是线段上的动点(不含端点、)若线段长为正整数,则点的个数共有( )A4个B3个C2个D1个4、如图,在ABC中,AB12,BC13,AC5,则BC边上的高AD为( )A3B4CD4.85、如图,RtABC中,BAC90,分别以ABC的三边为边作正方形ABDE,正方形BCFG,正方形ACHI,AI交CF于点J三个正方形没有重叠的部分为阴影部分,设四边形BGFJ的面积为S1,四边形CHIJ的面积为S2,若S1S212,SABC4
3、,则正方形BCFG的面积为()A16B18C20D226、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm27、如图,“赵爽弦图”是吴国的赵爽创制的以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,则阴影部分的面积是( )A169B25C49D648、如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底
4、4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cmA15B20C18D309、有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是( )A445B887C888D88910、下列条件中,能判断ABC是直角三角形的是( )Aa:b:c3:4:4Ba1,b,cCA:B:C3:4:5Da2:b2:c23:4:
5、5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,长方形BCFG是一块草地,折线ABCDE是一条人行道,BC12米,CD5米为了避免行人穿过草地(走虚线BD,践踏绿草,管理部门分别在B、D处各挂了一块牌子,牌子上写着“少走_米,踏之何忍”2、我国古代有这样一道数学问题:“枯木一根直立地上高二丈四尺,周六尺,有葛藤自根缠绕而上,三周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为24尺,底面周长为6尺,有葛藤自点A处缠绕而上,绕三周后其末端恰好到达B处,则问题中葛藤的最短长度是_尺3、如图,四边形中,于点若BD=1,则线段
6、的长为_4、如图,长方形纸片ABCD中,AB8cm,BC17cm,点O在边BC上,且OB10cm将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _cm5、将一副三角尺如图所示叠放在一起,点A、C、D在同一直线上,AE与BC交于点F,若AB14cm,则AF_cm三、解答题(5小题,每小题10分,共计50分)1、图、图都是44的正方形网格,每个小正方形的项点为格点,每个小正方形的边长均为1,在图、图中已画出AB,点A、B均在格点上,按下列要求画图:(1)在图中,画一个以AB为腰且三边长都是无理数的等腰三角形ABC,点C为格点;(2)在图中,画一个以AB为底的等腰三角形ABD
7、,点D为格点2、如图,直线AB经过O上的点C,并且OA=OB,CA=CB,直线OB交O于点E、D,连接EC、CD(1)试判断直线AB与O的位置关系,并加以证明;(2)求证:;(3)若,O的半径为3,求OA的长3、如图,在ABC中,ADBC,垂足为点D,AB13,BD5,AC15(1)求AD的长;(2)求BC的长4、已知ABC中,C=90,BC=3cm,BD=12cm,AD=13cm,ABC的面积是6cm2(1)求AB的长度;(2)求ABD的面积5、已知:DAAB,CBAB,AB25,AD15,BC10,如图1,点P是线段AB上的一个动点,连接PD、PC(1)当PDPC时,求AP的长;(2)线段
8、AB上是否存在点P,使PD+PC的值最小,若存在,在线段AB上标出点P,并求PD+PC的最小值;若不存在,请说明理由(3)如图2,点M在线段AB上以2个单位每秒的速度从点B向点A运动,同时点N在线段AD上从点A以x个单位每秒的速度向点D运动(当一个点运动结束时另一个点也停止运动),点M、N运动的时间为t秒,是否存在实数x,使AMN与BMC全等?若存在,求出x、t的值,若不存在,请说明理由-参考答案-一、单选题1、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长【详解】解:如图,连接PC,EF是
9、BC的垂直平分线,PB=PC,PA+PB=PA+PC,PAPB的最小值即为PAPC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,在RtABC中,A90,AB6,BC10,由勾股定理可得:,PAPB的最小值为8;故选B【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键2、B【分析】首先由勾股定理得AB,AC,BC的三边长,从而有AB2+AC2BC2,得BAC90,再根据SABC,代入计算即可【详解】解:由勾股定理得:AB,AC,BC,AB2+AC225,BC225,AB2+AC2BC2,BAC90,SABC,AD2,故选:B【
10、点睛】本题主要考查了勾股定理,通过勾股定理计算出三边长度,判断出BAC90是解题的关键3、B【分析】首先过A作AEBC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案【详解】解:如图:过A作AEBC于E,在ABC中,AB=AC=5,BC=8,当AEBC,EB=EC=4,AE=,D是线段BC上的动点(不含端点B,C).若线段AD的长为正整数,3AD5,AD=3或AD=4,当AD=4时,在靠近点B和点C端各一个,故符合条件的点D有3点.故选B.【点睛】本题主要考察了等腰三角形的性质,勾股定理的应用,
11、解题的关键是熟练掌握等腰三角形的性质,勾股定理的计算.4、C【分析】根据勾股定理逆定理可证明是直角三角形,再利用直角三角形的面积公式可得,解可得答案【详解】解:,是直角三角形,故选:【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长,满足,那么这个三角形就是直角三角形5、C【分析】设BCa,ACb,ABc,由正方形面积和三角形面积得S正方形BCFGS正方形ACHI16,即a2b216,再由勾股定理得a2b2c2,则c216,求出c4,然后求出b2,则a2b2+c220,即可求解【详解】解:设BCa,ACb,ABc,S1S正方形BCFGSABCSACJ,S2S正方形ACHISAC
12、J,S1S2S正方形BCFGSABCSACJS正方形ACHI+SACJS正方形BCFG4S正方形ACHI12,S正方形BCFGS正方形ACHI16,即a2b216,RtABC中,BAC90,a2b2c2,c216,c4(负值已舍去),SABCbc2b4,b2,a2b2+c216+2220,正方形BCFG的面积为20,故选:C【点睛】本题考查了勾股定理,设参数表示三角形的边长,根据已知条件求得a2b216是解题的关键6、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 详解 人教版 八年 级数 下册 第十七 勾股定理 专项 测试 试题 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内