三角函数模型的简单应用ppt课件.pptx
《三角函数模型的简单应用ppt课件.pptx》由会员分享,可在线阅读,更多相关《三角函数模型的简单应用ppt课件.pptx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、例例1 如图如图,某地一天从某地一天从614时的温度变化曲线近时的温度变化曲线近似满足函数似满足函数y=Asin(x+)+b (1)求这一天求这一天614时时的最大温差的最大温差; (2)写出这段曲线的函数解析式写出这段曲线的函数解析式.61014y T/xt/h102030O探究一:根据图象建立三角函数关系探究一:根据图象建立三角函数关系解解:(1)最大温差是最大温差是20(2)从从614时的图象是函数时的图象是函数y=Asin(x+)+b的的半个周期的图象半个周期的图象61014y T/xt/h102030O130 10102A 130 10202b 1214628将将x=6,y=10代入
2、上式代入上式,解得解得34310sin20,6,1484yxx所求出的函数模型只能所求出的函数模型只能近似刻画这天某个时段近似刻画这天某个时段温度变化温度变化,因此应当特别因此应当特别注意自变量的变化范围注意自变量的变化范围所以所以题型总结:题型总结: maxminmaxmin1 1A =f x-f xA =f x-f x2 2 maxminmaxmin1 1b=f x+f xb=f x+f x2 2利利用用求求得得2 2 T T = =, 利利用用最最低低点点或或最最高高点点在在图图象象上上该该点点的的坐坐标标满满足足函函数数解解析析式式可可求求得得, , 也可以利用函数的零值点来求也可以利
3、用函数的零值点来求f求函数的方法:(x)= Asin( x+ )+b(x)= Asin( x+ )+b例例2 画出函数画出函数y=|sinx|的图象并观察其周期的图象并观察其周期.xy-11O2222y=|sinx|解解周期为周期为验证验证:|sin(x+)|=|-sinx|=|sinx|利用函数图象的直观性,通过观察图象而获得对函数性质的认识,这是研究数学问题的常用方法。显然,函数y=|sinx|与正弦函数有紧密的联系,你能利用这种联系说说它的图象的作法吗?正弦函数正弦函数y=sinx的图象保留的图象保留x轴上方部分,将轴上方部分,将x轴下方部轴下方部分翻折到分翻折到x轴上方,得到轴上方,得
4、到y=|sinx|的图象的图象例例4 4 海水受日月的引力海水受日月的引力, ,在一定的时候发生涨落的现象在一定的时候发生涨落的现象叫潮叫潮. .一般地一般地, ,早潮叫潮早潮叫潮, ,晚潮叫汐晚潮叫汐. .在通常情况下在通常情况下, ,船在船在涨潮时驶进航道涨潮时驶进航道, ,靠近码头靠近码头; ;卸货后卸货后, ,在落潮时返回海洋在落潮时返回海洋. .下面是某港口在某季节每天的时间与水深关系表下面是某港口在某季节每天的时间与水深关系表: :时刻时刻水深水深/ /米米时刻时刻水深水深/ /米米时刻时刻水深水深/ /米米0:005.09:002.518:005.03:007.512:005.0
5、21:002.56:005.015:007.524:005.0探究三:探究三:根据相关数据进行三角函数拟合根据相关数据进行三角函数拟合 (1)(1)选用一个函数来近似描述这个港口的水深与时间的选用一个函数来近似描述这个港口的水深与时间的函数关系函数关系, ,给出整点时的水深的近似数值给出整点时的水深的近似数值( (精确到精确到0.001).0.001).(2)(2)一条货船的吃水深度一条货船的吃水深度( (船底与水面的距离船底与水面的距离) )为为4 4米米, ,安安全条例规定至少要有全条例规定至少要有1.51.5米的安全间隙米的安全间隙 ( (船底与洋底的船底与洋底的距离距离),),该船何时
6、能进入港口该船何时能进入港口? ?在港口能呆多久在港口能呆多久? ?(3)(3)若某船的吃水深度为若某船的吃水深度为4 4米米. .安全间隙为安全间隙为1.51.5米米, ,该船在该船在2:002:00开始卸货开始卸货, ,吃水深度以每小时吃水深度以每小时0.30.3米的速度减少米的速度减少, ,那那么该船在什么时间必须停止卸货么该船在什么时间必须停止卸货, ,将船驶向较深的水域将船驶向较深的水域? ?课件演示解解:(1):(1)以时间为横坐标以时间为横坐标, ,水深为纵坐标水深为纵坐标, ,在直角在直角坐标系中画出散点图坐标系中画出散点图3 6 9 12 15 18 21 24Oxy642根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 模型 简单 应用 ppt 课件
限制150内