《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项攻克试卷.docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项攻克试卷.docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学下册第一章直角三角形的边角关系专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知某水库大坝的横断面为梯形,其中一斜坡的坡度,则斜坡的坡角为( )A30B45C60D1502、如果直线
2、与 轴正半轴的夹角为锐角 , 那么下列各式正确的是( )ABCD3、如图,在ABC中,C=90,ABC=30,D是AC的中点,则tanDBC的值是( )ABCD4、如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到,则的值为( )ABCD5、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )ABCD6、如图,将一块含30角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+47、在ABC中,ACB
3、90,AC1,BC2,则sinB的值为()ABCD8、ABC中,tanA1,cosB,则ABC的形状是()A等腰三角形B直角三角形C等腰直角三角形D锐角三角形9、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD10、如图,在ABC中,C90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,BDAB,BD、AC相交于点D,ADAC,AB2,ABC150,则DBC的面积是_2、如图,在44的正方形网格中,A
4、BC的顶点都在边长为1的小正方形的顶点上,则tanACB的值为 _3、在中,点D在BC上,且,则_4、在ABC中,C=90,如果tanA=2,AC=3,那么BC=_5、如图,菱形ABCD中,ABC=120,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到A1D1A2按此规律,得到A2020D2020A2021,记ADA1的面积为S1,A1D1A2的面积为S2,A2020D2020A2021的面积为S2
5、021,则S2021=_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中,正方形ABCD的边AB在x轴的正半轴上,顶点C,D在第一象限内,正比例函数y13x的图象经过点D,反比例函数的图象经过点D,且与边BC交于点E,连接OE,已知AB3(1)点D的坐标是 ;(2)求tanEOB的值;(3)观察图象,请直接写出满足y23的x的取值范围;(4)连接DE,在x轴上取一点P,使,过点P作PQ垂直x轴,交双曲线于点Q,请直接写出线段PQ的长2、计算:3、计算:4、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落在 边上,记为点 ,如果 ,则 _5、计算
6、、解方程:(1)(2)(3)-参考答案-一、单选题1、A【分析】直接利用坡角的定义得出答案【详解】解:某水库大坝的横断面是梯形,其中一斜坡的坡度,设这个斜坡的坡角为,故,故故选:A【点睛】本题主要考查了解直角三角形的应用,解题的关键是根据题意正确得出坡角与坡比的关系2、D【分析】在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B,则可求得的正余弦、正余切值,从而可得答案【详解】如图,在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B则OB=|a|,PB=2|a|由勾股定理得:在直角POB中,故选项D正确故选:D【点睛】本题考查了正比例函数的图象与性质
7、,锐角三角函数,关键是画出图形,并在直线任取一点,作x轴的垂线得到直角三角形3、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90,ABC=30,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键4、B【分析】利用勾股定理逆定理得出CDB是直角三角形,以及锐角三角函数关系进而得出结论【详解】解:如图,连接BD,由网格利用勾股定理得:是直角三角形,故选:B【点睛】本题考查旋转的性质、等腰三角形的性质、余弦等知识,是重要考点,掌握相关知识是解题关键5、B【分析】利用,得到BAC=DCA,根据同圆
8、的半径相等,AC=AB=3,再利用勾股定理求解 可得tanACD=,从而可得答案.【详解】解:如图, , BAC=DCA 同圆的半径相等, AC=AB=3,而 在RtACD中,tanACD= tanBAC=tanACD= 故选B【点睛】本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键6、C【分析】根据30角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30,AB=10,AC=AB=5,BC=ABcos3
9、0=10,在RtCBE中,CE=,CAD+ACD=90,BCE+ACD=90,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键7、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义8、C【分析】先根据ABC中,tanA=1,cosB=求
10、出A及B的度数,进而可得出结论【详解】解:ABC中,tanA=1,cosB=,A=45,B=45,C=90,ABC是等腰直角三角形故选:C【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键9、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键10、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握
11、三角函数的求法是解题的关键二、填空题1、【分析】过点作,交延长线于点,先根据相似三角形的判定证出,根据相似三角形的性质可得,从而可得,再解直角三角形可得,从而可得,然后利用三角形的面积公式即可得【详解】解:如图,过点作,交延长线于点,解得,又,在中,即,解得,解得,则的面积是,故答案为:【点睛】本题考查了相似三角形的判定与性质、解直角三角形等知识点,通过作辅助线,构造相似三角形是解题关键2、【分析】先根据勾股定理求出AC,再根据等积关系求出BD,再根据勾股定理求出AD以及CD,最后再求出角的正切值即可【详解】解:过点B作BDAC于点D,如图,由勾股定理得, 根据等积关系得, 由勾股定理得, 故
12、答案为:【点睛】本题考查解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题3、【分析】由题意知, 在中利用勾股定理求出的长,进而得出结果【详解】解:在中,故答案为:【点睛】本题考察了等腰三角形,勾股定理与三角函数值解题的关键在于角度的转化4、【分析】利用正切的定义求解【详解】解:C=90,tanA=2,BC=2AC=23=6故答案为:6【点睛】本题考查了锐角三角函数的定义:在RtABC中,C=90锐角A的对边a与邻边b的比叫做A的正切,记作tan A5、#【分析】由题意得,则有为等边三角形,同理可得. 都为等边三角形,进而根据等边三角形的面积公式可得,.由
13、此规律可得,即可求解【详解】解:四边形是菱形,为等边三角形,同理可得. 都为等边三角形,过点B作BECD于点E,如图所示:,同理可得:,;由此规律可得:,;故答案为:【点睛】本题考查了菱形的性质,等边三角形的性质与判定及三角函数,解题的关键是熟练掌握以上知识点三、解答题1、(1);(2);(3);(4)或【分析】(1)根据D点纵坐标为3,代入正比例函数即可求解;(2)求出EB,根据正切的性质即可求解;(3)根据函数图象即可直接求解;(4)分当点P在线段AB上时和当点P在线段AB的延长线时,分别求出AP的长,故可求解【详解】解:(1)正方形ABCD的边长AB=3AD=3D点在正比例函数y13x上
14、设D(x,3),代入y13x得3=3x解得x=1D故答案为:;(2)反比例函数的图象经过点D,k=13=3E点的横坐标为1+3=4E(4,y),代入得到EB=tanEOB=(3)如图,根据图象可得3时,图象在直线y=3的上方,x的取值为0x1(4)当点P在线段AB上时,如图1,设AP=m,则PB=3-mSPDE=S梯形ABED-SADP-SPBE=解得m=3OP=1+3=4点P(4,0)当x=4时,Q(4,)PQ=当点P在线段AB的延长线时,如图2,设AP=m,则PB=m-3SPDE=SADP-S梯形ABED-SPBE=解m=5OP=1+5=6点P(6,0)当x=6时,Q(6,)PQ=综上,P
15、Q的长为或【点睛】此题主要考查反比例函数与几何综合、解直角三角形,解题的关键是熟知待定系数法的应用、正切的性质2、【分析】直接利用特殊角的三角函数值代入,进而利用二次根式的乘法运算法则计算得出答案【详解】解:原式【点睛】本题主要考查了特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键3、2【分析】将特殊角的三角函数值代入,然后利用二次根式的运算法则计算即可得【详解】解:,【点睛】题目主要考查特殊角的三角函数值的计算,二次根式的混合运算,0次幂的运算,熟记特殊角的三角函数值是解题关键4、#【分析】过点作于点,设,则,解直角三角形即可求得,即的值【详解】解:如图,过点作于点在 中,是等腰直角三角形=设,则,沿着直线翻折,点落在边上,记为点,在中,即解得故答案为:【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键5、(1);(2);(3)【分析】(1)利用配方法求出方程的解;(2)利用因式分解法求出方程的解;(3)利用负指数幂法则,特殊角的三角函数值计算,化简二次根式后计算出最后的结果【详解】(1)解:x2=6x+7方程可化为即;(2)解:4(x3)2=x(x3)方程可化为:或(3)2tan45+4sin602 221+4222+【点睛】本题考查了实数的运算、解一元二次方程,结合方程的特点选择合适、简便的方法是解题的关键
限制150内