难点解析沪科版九年级数学下册第24章圆月考试卷(无超纲).docx
《难点解析沪科版九年级数学下册第24章圆月考试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析沪科版九年级数学下册第24章圆月考试卷(无超纲).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到
2、,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1203、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD4、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD5、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定6、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm7、如
3、图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D48、如图,是的直径,、是上的两点,若,则( )A15B20C25D309、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD10、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为
4、:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、一个五边形共有_条对角线3、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_4、如图,在中,绕点B顺时针方向旋转45得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为_(结果保留)5、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的
5、半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm三、解答题(5小题,每小题10分,共计50分)1、解题与遐想如图,RtABC的内切圆与斜边AB相切于点D,AD4,BD5求RtABC的面积王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4520,有种白算的感觉赵丽华:我把4和5换成m、n再算一遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出R
6、tABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)2、新定义:在平面直角坐标系xOy中,若几何图形G与A有公共点,则称几何图形G为A的关联图形,特别地,若A的关联图形G为直线,则称该直线为A的关联直线如图1,M为A的关联图形,直线l为A的关联直线(1)已知O是以原点为圆心,2为半径的圆,下列图形:直线y2x+2;直线yx+3;双
7、曲线y,是O的关联图形的是 (请直接写出正确的序号)(2)如图2,T的圆心为T(1,0),半径为1,直线l:yx+b与x轴交于点N,若直线l是T的关联直线,求点N的横坐标的取值范围(3)如图3,已知点B(0,2),C(2,0),D(0,2),I经过点C,I的关联直线HB经过点B,与I的一个交点为P;I的关联直线HD经过点D,与I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x6上且恰为I的直径,请直接写出点H横坐标h的取值范围3、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长4、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点
8、,点在第二象限上,且,则_5、如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D (1)求证:DB=DE;(2)若AB=12,BD=5,求AC长-参考答案-一、单选题1、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转1
9、80度后与原图重合2、B【分析】根据旋转可得,得【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质3、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角
10、三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型4、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键5、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置
11、关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键6、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键7、D【分析】首先运用勾股定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 难点 解析 沪科版 九年级 数学 下册 24 圆月 考试卷 无超纲
限制150内