《难点详解沪科版九年级数学下册第25章投影与视图专题测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第25章投影与视图专题测试试题(含解析).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第25章投影与视图专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD2、如图所示的领奖台是由三个长方体组合而
2、成的几何体,则这个几何体的左视图是()ABCD3、下面的三视图所对应的几何体是()ABCD4、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD5、如图几何体的主视图是( )ABCD6、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()ABCD7、下列几何体中,俯视图为三角形的是( )ABCD8、如图,该几何体的俯视图是( )ABCD9、在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )AABBCCDD10、在平行投影下,矩形的投影不可能是( )ABCD第卷(非选择题 70分
3、)二、填空题(5小题,每小题4分,共计20分)1、天坛是古代帝王祭天的地方,其中最主要的建筑就是祈年殿老师希望同学们利用所学过的知识测量祈年段的高度,数学兴趣小组的同学们设计了如图所示的测量图形,并测出竹竿长2米,在太阳光下,它的影长为1.5米,同一时刻,祈年殿的影长约为28.5米请你根据这些数据计算出祈年殿的高度约为_米2、如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是_3、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_厘米4、用若干个相同的小立
4、方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差_个5、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号 三、解答题(5小题,每小题10分,共计50分)1、如图,是由小立方块塔成的几何体,请画出这个几何体从正面、左面、上面三个方面看到的形状图:2、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图3、如图是由7个棱长为1的小正方体搭成的几何体(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为 (包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还可以放 个相同的小正方体4、如图
5、是由若干个完全相同的小正方体堆成的几何体(1)图中有几个小正方体;(2)画出该几何体的三视图;5、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图(1)该几何体是由 块小木块组成的;(2)求出该几何体的体积;(3)求出该几何体的表面积(包含底面)-参考答案-一、单选题1、C【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图【详解】从左面可看到一个长方形和一个长方形,且两个长方形等高故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键2、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案【详解】解:A是俯视图,B、
6、D不是该几何体的三视图,C是左视图故选:C【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线3、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状4、A【分析】从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.【详解】解:从左边看过去:可以
7、看到上下两个宽度相同的长方形,所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,故选A【点睛】本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.5、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解【详解】解:从正面看,主视图是两个长方形故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键6、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意B、当7个小正方体如图分布时,符合题意,本选项不符
8、合题意C、没有符合题意的几何图形,本选项符合题意D、当7个小正方体如图分布时,符合题意,本选项不符合题意故选:C【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力7、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度
9、去观察,才能提高空间想象能力8、A【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.9、D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的故选:D【点睛】考查主要考查了的影子问题,解题的关键在于能够知道太阳光是平行光线10、A【分析】根据平行投影得出矩形的投影图形解答即可【详解】在平行投影下,矩形的投影图形可能是线段、矩形、平行四边形
10、,不可能是直角梯形,故选A【点睛】本题考查了平行投影,关键是根据平行投影得出矩形的投影图形二、填空题1、38【分析】在同一时刻物高和影长成正比,据此解答即可【详解】解:根据相同时刻的物高与影长成比例,设祈年殿的高度为米,则可列比例为,解得所以祈年殿的高度为38米故答案为:38【点睛】本题考查了投影的知识,利用在同一时刻物高与影长的比相等的知识,考查利用所学知识解决实际问题的能力2、36【分析】先确定该几何体是三棱柱,再得到底面是边长为4cm的等边三角形,侧棱长为3cm,从而可得答案.【详解】解:从三视图可得得到:这个几何体是三棱柱,其底面是边长为4cm的等边三角形,侧棱长为3cm,所以这个三棱
11、柱的侧面积为:cm2故答案为:36 cm2【点睛】本题考查的是简单几何体的三视图,根据三视图还原几何体,求解三棱柱的侧面积,掌握由三视图还原几何体是解题的关键.3、【分析】由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可【详解】根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,因为正六边形的直径为60cm,则AC=602=30(cm),ACD=120,作CBAD于点B,那么AB=ACsin60=30=15(cm),所以AD=2AB=30(cm),胶带的长至少=(cm)故答案为:【点睛】本题考查了正六边形的性质、立体图形
12、的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解4、5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5【点睛
13、】本题考查几何体的三视图由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字5、【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可【详解】根据三视图的定义可知:第一个三视图所对应的几何体为;第二个三视图所对应的几何体为;第三个三视图对应的几何体为;第四个三视图对应的几何体为;故答案为:【点睛】本题考查三视图,熟知三视图的定
14、义是解题的关键三、解答题1、见解析【分析】根据简单几何体的三视图画法画出图形即可【详解】解:三视图如下所示:【点睛】本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握画三视图的方法2、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形3、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡
15、住的面积即可;(3)根据俯视图和左视图的特点即可求解【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(644)2230,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键4、(1)10;(2)见解析【分析】(1)分别数出每层的小正方体的个数并相加即可;(2)按要求画出三视图即可【详解】(1)1+3+6=10(个)即图中共有10个小正方体(2)所画的三视图如下:【点睛】本题主要考查了三视图、求几何体的小正方体的个数,要求较好的空间想象能力5、(1)10;(2)10a3 cm3;(3)40a2 cm2【分析】(1)根据三视图的定义解决问题即可;(2)求出10个小正方体的体积和即可;(3)还原出立体图形,进而求出各个面的面积进行加总求和【详解】解答:解:(1)几何体的小正方形的个数如俯视图所示,21+3+1+1+210故答案为:10(2)V10a3(cm3)该几何体的体积为10a3cm3(3)S2(6a2+6a2+6a2)+2(a2+a2)40a2(cm2)该几何体的表面积40a2cm2【点睛】本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面
限制150内