2021_2021学年新教材高中数学第六章平面向量及其应用6.4.3.3余弦定理正弦定理应用举例_距离问题课时素养检测含解析新人教A版必修第二册.doc
《2021_2021学年新教材高中数学第六章平面向量及其应用6.4.3.3余弦定理正弦定理应用举例_距离问题课时素养检测含解析新人教A版必修第二册.doc》由会员分享,可在线阅读,更多相关《2021_2021学年新教材高中数学第六章平面向量及其应用6.4.3.3余弦定理正弦定理应用举例_距离问题课时素养检测含解析新人教A版必修第二册.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时素养检测十三余弦定理、正弦定理应用举例距离问题(30分钟60分)一、选择题(每小题4分,共24分)1.如图,为了测量隧道口AB的长度,给定下列四组数据,计算时应当用数据()A.,a,bB.,aC.a,b,D.,b【解析】选C.由A与B不可到达,故不易测量,所以计算时应当用数据a,b,.2.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.若测得CA=400 m,CB=600 m,ACB=60,则AB的长为()A.200 mB.200 mC.200 mD.500 m【解析】选C.在ABC中,由余
2、弦定理得AB2=AC2+BC2-2ACBCcosACB,所以AB2=4002+6002-2400600cos 60=280 000,所以AB=200(m),即A,B两点间的距离为200m.3.海上有A,B两个小岛相距10海里,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,则B,C间的距离是()A.10海里B.5海里C.5海里D.5海里【解析】选C.在ABC中,A=60,B=75,C=180-60-75=45,根据正弦定理得,得=,解得BC=5.4.轮船A和轮船B在中午12时同时离开海港O,两船航行方向的夹角为120,两船的航行速度分别为25 n mile/h,15 n mil
3、e/h,则14时两船之间的距离是()A.50 n mileB.70 n mileC.90 n mileD.110 n mile【解析】选B. 到14时,轮船A和轮船B分别走了50 n mile,30 n mile,由余弦定理得两船之间的距离为l=70 n mile.5.一船以每小时15 km的速度向东行驶,船在A处看到一灯塔B在北偏东60,行驶4小时后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为()A.60 kmB.60 kmC.30 kmD.30 km【解析】选A.画出图形如图所示,在ABC中,BAC=30,AC=415=60,B=45,由正弦定理得=,所以BC=60,所以船
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2021 学年 新教材 高中数学 第六 平面 向量 及其 应用 6.4 3.3 余弦 定理 正弦 举例 距离 问题 课时 素养 检测 解析 新人 必修 第二
链接地址:https://www.taowenge.com/p-28232609.html
限制150内