平面向量方法总结(带例题)【大全】.doc
《平面向量方法总结(带例题)【大全】.doc》由会员分享,可在线阅读,更多相关《平面向量方法总结(带例题)【大全】.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面向量应试技巧总结一向量有关概念:1向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移).如:已知A(1,2),B(4,2),则把向量按向量(1,3)平移后得到的向量是_(答:(3,0)2零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);4相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向量平行.提醒:相等向量一定是
2、共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;6相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是.如下列命题:(1)若,则.(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形.(4)若是平行四边形,则.(5)若,则。(6)若,则.其中正确的是_(答:(4)(5))二向量的表示方法:1几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2符号表示法:用一个小写的英文字母来表示,如,等;3坐标表示法:在平面
3、内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。三平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。如(1)若,则_(答:);(2)下列向量组中,能作为平面内所有向量基底的是 A。 B。 C。 D. (答:B);(3)已知分别是的边上的中线,且,则可用向量表示为_(答:);(4)已知中,点在边上,且,则的值是_(答:0)四实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规
4、定如下:当0时,的方向与的方向相同,当0时,的方向与的方向相反,当0时,,注意:0。五平面向量的数量积:1两个向量的夹角:对于非零向量,作,称为向量,的夹角,当0时,,同向,当时,反向,当时,垂直。2平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量.如(1)ABC中,,则_(答:9);(2)已知,与的夹角为,则等于_(答:1);(3)已知,则等于_(答:);(4)已知是两个非零向量,且,则的夹角为_(答:)3在上的投影为,它是一个实数,但不一定大于0。如已知,且,则
5、向量在向量上的投影为_(答:)4的几何意义:数量积等于的模与在上的投影的积。5向量数量积的性质:设两个非零向量,,其夹角为,则:;当,同向时,特别地,;当与反向时,;当为锐角时,0,且不同向,是为锐角的必要非充分条件;当为钝角时,0,且不反向,是为钝角的必要非充分条件;非零向量,夹角的计算公式:;。如(1)已知,如果与的夹角为锐角,则的取值范围是_(答:或且);(2)已知的面积为,且,若,则夹角的取值范围是_(答:);(3)已知与之间有关系式,用表示;求的最小值,并求此时与的夹角的大小(答:;最小值为,)六向量的运算:1几何运算:向量加法:利用“平行四边形法则”进行,但“平行四边形法则只适用于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大全 平面 向量 方法 总结 例题
限制150内