2021年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 理.doc
《2021年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 理.doc》由会员分享,可在线阅读,更多相关《2021年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 理.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1(2012福建高考,理4)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A球 B三棱锥C正方体 D圆柱2(2012北京高考,理7)某三棱锥的三视图如图所示,该三棱锥的表面积是()A286 B306C5612 D60123(2012广东高考,理6)某几何体的三视图如图所示,它的体积为()A12 B45 C57 D814(2012安徽高考,理12)某几何体的三视图如图所示,该几何体的表面积是_5(2012湖南高考,理18)如图,在四棱锥PABCD中,PA平面ABCD,AB4,BC3,AD5,DABABC90,E是C
2、D的中点(1)证明:CD平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥PABCD的体积考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中低档题考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交汇,是每年的必考内容预计在2013年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两个几何体的“切”或“接”形态中,或以三视图为载体进行
3、交汇考查,此块内容还要注意强化几何体的核心截面以及补形、切割等数学思想方法的训练热点例析热点一空间几何体的三视图与直观图【例】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧视图为()(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是()规律方法(1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主
4、)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线;(3)平面图形与立体图形的实物图与直观图之间的关系如下表:图形实物图直观图平面图形水平放置的平面图形直观图(斜二测画法,即平行于x轴的线段长度不变,而平行于y轴的线段长度变为原来长度的一半)设其面积S直观图面积为S由直观图求原图形元素间的关系,利用逆向思维,寻求突破口立体图形空间几何体直观图(只比平面图形的直观图多画了一个z轴且其长度不变)变式训练1(1)某四棱锥的三视图如图所示,该四棱锥的表面积是()A32 B1616C48 D1632(2)一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底长
5、均为1的等腰梯形,则这个平面图形的面积是()A B1C1 D2热点二空间几何体的表面积与体积【例】(2011福建高考,文20)如图,在四棱锥PABCD中,PA底面ABCD,ABAD,点E在线段AD上,且CEAB.(1)求证:CE平面PAD;(2)若PAAB1,AD3,CD,CDA45,求四棱锥PABCD的体积规律方法(1)求几何体的体积问题,可以多角度、多方位地考虑对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解(2)求解几何体的表面积时要注意S表S侧S底(3)
6、对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,体积或表面积的求解套用对应公式即可变式训练2已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A24 B24C24 D24热点三多面体与球【例】已知正四棱锥的底面边长为a,侧棱长为a.(1)求它的外接球的体积;(2)求它的内切球的表面积规律方法(1)涉及球与棱柱、棱锥的切、接问题时,一般先过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系(2)若球面四点P,A,B
7、,C构成的线段PA,PB,PC两两垂直,且PAa,PBb,PCc,则4R2a2b2c2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法变式训练3如图所示,在四棱锥PABCD中,底面ABCD是边长为a的正方形,PD底面ABCD,且PDa,PAPCa.若在这个四棱锥内放一球,则此球的最大半径是_思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 2021 全国 高考 数学 二轮 复习 专题 立体几何 空间 几何体 视图 表面积 体积
链接地址:https://www.taowenge.com/p-28234580.html
限制150内