2021_2021学年新教材高中数学第十一章立体几何初步测评优质作业含解析新人教B版必修第四册.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021_2021学年新教材高中数学第十一章立体几何初步测评优质作业含解析新人教B版必修第四册.docx》由会员分享,可在线阅读,更多相关《2021_2021学年新教材高中数学第十一章立体几何初步测评优质作业含解析新人教B版必修第四册.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章测评(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交答案B解析由棱台的定义知,各侧棱的延长线交于一点,所以选B.2.一直线l与其外三点A,B,C可确定的平面个数是()A.1B.3C.1或3D.1或3或4答案D解析当A,B,C共线且与l平行或相交时,确定一个平面;当A,B,C共线且与l异面时,可确定3个平面;当A,B,C三点不共线时,可确定4个平面.3.若三个平面两两相交,有三条交线,则下
2、列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案D解析三平面两两相交,交线如有2条平行,由线面平行性质定理知三条都平行,如三棱柱三侧棱;三条交线也可以交于一点,如三棱锥三侧棱.4.(2020全国,理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5-14B.5-12C.5+14D.5+12答案C解析如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为h,则有h2=12ah,
3、h2=h2-a22,因此有h2-a22=12ah,化简得4ha2-2ha-1=0,解得ha=5+14.(负值舍去)5.设,为两个平面,则的充要条件是()A.内有无数条直线与平行B.内有两条相交直线与平行C.,平行于同一条直线D.,垂直于同一平面答案B解析内有无数直线与平行是的必要不充分条件,A不符合;内有两条相交直线与平行是的充要条件,B符合;,平行同一条直线是的必要不充分条件,C不符合;,垂直同一平面是的必要不充分条件,D不符合.6.(2020天津)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12B.24C.36D.144答案C解析2R=(232)2+(23)2=6,球
4、的表面积为4R2=36.故选C.7.如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BMEN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BMEN,且直线BM,EN是异面直线答案B解析如图,连接BD,BE.在BDE中,N为BD的中点,M为DE的中点,BM,EN是相交直线,排除选项C、D.作EOCD于点O,连接ON.作MFOD于点F,连接BF.平面CDE平面ABCD,平面CDE平面ABCD=CD,EOCD,EO平面CDE,EO平面ABCD.同理,MF平面ABCD.MFB
5、与EON均为直角三角形.设正方形ABCD的边长为2,易知EO=3,ON=1,MF=32,BF=22+94=52,则EN=3+1=2,BM=34+254=7,BMEN.故选B.8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为,直线PB与平面ABC所成的角为,二面角P-AC-B的平面角为,则()A.,B.,C.,D.,答案B解析如图G为AC中点,连接VG,点V在底面ABC上的投影为点O,则点P在底面ABC上的投影点D在线段AO上,过点D作DE垂直AC于点E,易得PEVG,过点P作PFAC交VG于点F,过点D作DHAC,交BG于点H,
6、则=BPF,=PBD,=PED,结合PFB,BOH,POB均为直角三角形,可得cos=PFPB=EGPB=DHPB,在RtPEO中,tan=PDEDPDBD=tan,所以.综上所述,故选B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设l为直线,是两个不同的平面,下列命题中错误的是()A.若l,l,则B.若l,l,则C.若l,l,则D.若,l,则l答案ACD解析A中,也可相交,A不正确;由垂直同一直线的两平面平行.10.(2020山东实验中学高三月考)九章算术中将底面为直角三角形且侧棱垂直
7、于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图,在堑堵ABC-A1B1C1中,ACBC,且AA1=AB=2.下列说法正确的是()A.四棱锥B-A1ACC1为“阳马”B.四面体A1-C1CB为“鳖臑”C.四棱锥B-A1ACC1体积最大为23D.过A点分别作AEA1B于点E,AFA1C于点F,则EFA1B答案ABD解析由题意知在堑堵ABC-A1B1C1中,ACBC,侧棱AA1平面ABC.在选项A中,BC平面ABC,所以AA1BC.又ACBC,且AA1AC=A,所以BC平面AA1C1C.所以四棱锥B-A1ACC1为“阳
8、马”,故A正确.在选项B中,由ACBC,即A1C1BC,又A1C1C1C且C1CBC=C,所以A1C1平面BB1C1C.所以A1C1BC1,则A1BC1为直角三角形.又由BC平面AA1C1C,得A1BC为直角三角形.由“堑堵”的定义可得A1C1C为直角三角形,CC1B为直角三角形.所以四面体A1-C1CB为“鳖臑”,故B正确.在选项C中,有4=AC2+BC22ACBC,即ACBC2,当且仅当AC=BC时取等号.VB-A1ACC1=13SA1ACC1BC=13AA1ACBC=23ACBC43,故C不正确.在选项D中,已知BC平面AA1C1C,则BCAF,AFA1C且A1CBC=C,则AF平面A1
9、BC,所以AFA1B.又AEA1B且AFAE=A,则A1B平面AEF,则A1BEF,故D正确.11.如图,正方体ABCD-A1B1C1D1的棱长为a,以下结论正确的是()A.异面直线A1D与AB1所成的角为60B.直线A1D与BC1垂直C.直线A1D与BD1平行D.三棱锥A-A1CD的体积为16a3答案ABD解析A1D与AB1所成角即A1D与DC1成的角,再连接A1C构成等边A1DC1,即A正确;A1D与BC1成的角即A1D与AD1成的角,由A1DAD1即B正确;由BD1平面A1DC1,BD1A1D,即C不正确;V三棱锥A-A1CD=V三棱锥A1-ACD=13a12a2=a36,即D正确.12
10、.已知空间中两条直线a,b所成的角为50,P为空间中给定的一个定点,直线l过点P且与直线a和直线b所成的角都是(090),则下列选项正确的是()A.当=15时,满足题意的直线l不存在B.当=25时,满足题意的直线l有且仅有1条C.当=40时,满足题意的直线l有且仅有2条D.当=60时,满足题意的直线l有且仅有3条答案ABC解析如图,过点P作a1a,b1b,则相交直线a1,b1确定一平面.a1与b1的夹角为50,设直线PA与a1,b1的夹角均为,如图l绕P转动始终与a1,b1夹角相等,当l在内为a,b夹角平分线时,最小为25,所以AB正确,当为40和60时直线l都有2条,所以C正确,D错.三、填
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2021 学年 新教材 高中数学 第十一 立体几何 初步 测评 优质 作业 解析 新人 必修 第四
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-28236471.html
限制150内