2021届中考数学总复习 二十六 图形的平移精练精析1 华东师大版.doc
《2021届中考数学总复习 二十六 图形的平移精练精析1 华东师大版.doc》由会员分享,可在线阅读,更多相关《2021届中考数学总复习 二十六 图形的平移精练精析1 华东师大版.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、图形的变化图形的平移1一选择题(共8小题)1如图,将ABC沿BC方向平移2cm得到DEF,若ABC的周长为16cm,则四边形ABFD的周长为()A16cmB18cmC20cmD22cm2如图,如果把ABC的顶点A先向下平移3格,再向左平移1格到达A点,连接AB,则线段AB与线段AC的关系是()A垂直B相等C平分D平分且垂直3已知线段CD是由线段AB平移得到的,点A(1,4)的对应点为C(4,7),则点B(4,1)的对应点D的坐标为()A(1,2)B(2,9)C(5,3)D(9,4)4如图,将边长为4个单位的等边ABC沿边BC向右平移2个单位得到DEF,则四边形ABFD的周长为()A12B16C
2、20D245如图,已知EFD=BCA,BC=EF,AF=DC若将ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A梯形B平行四边形C矩形D等边三角形6如图将等腰直角ABC沿BC方向平移得到A1B1C1,若BC=3,ABC与A1B1C1重叠部分面积为2,则BB1=()A1BCD27如图,EF是ABC的中位线,AD是中线,将AEF沿AD方向平移到A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知AEF的面积是7,则阴影部分的面积是()A7B14C21D288如图,在RtABC中,C=90,AC=4,将ABC沿CB向右平移得到DEF,若四边形ABED的面积等
3、于8,则平移距离等于()A2B4C8D16二填空题(共8小题)9如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到ABC,当两个三角形重叠部分的面积为32时,它移动的距离AA等于_10如图,在ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移2个单位后,得到ABC,连接AC,则ABC的周长为_11如图,在直角坐标系中,已知点A(3,1),点B(2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_12如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段OA,则点A的对应点A的
4、坐标为_13在平面直角坐标系中,将点A(1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是_14如图,矩形ABCD中,AB=3cm,BC=4cm沿对角线AC剪开,将ABC向右平移至A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1=_cm15如图,将周长为8的ABC沿BC方向向右平移1个单位得到DEF,则四边形ABFD的周长为_16如图,已知A(3,1),B(1,1),C(2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C(2,0)时,曲线ACB描过的面积为_三解答题(共7小题)17在边长为1的小正方形
5、网格中,AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为_;(2)将AOB向左平移3个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为_18如图,ABC中,AB=BC,将ABC沿直线BC平移到DCE(使B与C重合),连接BD,求BDE的度数19如图,在方格纸中(小正方形的边长为1),ABC的三个顶点均为格点,将ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的ABC,并直接写出点A、B、C的坐标;(2)求出在整个平移过程中,ABC扫过的面积20如图,已知ABC的面积为16,BC=8现将ABC沿直线B
6、C向右平移a个单位到DEF的位置(1)当a=4时,求ABC所扫过的面积;(2)连接AE、AD,设AB=5,当ADE是以DE为一腰的等腰三角形时,求a的值21如图,将矩形ABCD沿对角线AC剪开,再把ACD沿CA方向平移得到ACD(1)证明AADCCB;(2)若ACB=30,试问当点C在线段AC上的什么位置时,四边形ABCD是菱形,并请说明理由22如图,在三角形ABC中,AC=BC,若将ABC沿BC方向向右平移BC长的距离,得到CEF,连接AE(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tanACB=时,求AB的长23如图,已知ABC的面积为3,且AB=A
7、C,现将ABC沿CA方向平移CA长度得到EFA(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若BEC=15,求AC的长图形的变化图形的平移1参考答案与试题解析一选择题(共8小题)1如图,将ABC沿BC方向平移2cm得到DEF,若ABC的周长为16cm,则四边形ABFD的周长为()A16cmB18cmC20cmD22cm考点:平移的性质专题:几何图形问题分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案解答:解:根据题意,将周长为16cm的ABC沿BC向右平移2cm得到DEF,AD=CF=2cm,B
8、F=BC+CF=BC+2cm,DF=AC;又AB+BC+AC=16cm,四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm故选:C点评:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键2如图,如果把ABC的顶点A先向下平移3格,再向左平移1格到达A点,连接AB,则线段AB与线段AC的关系是()A垂直B相等C平分D平分且垂直考点:平移的性质;勾股定理专题:网格型分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段AB与线段AC的关系解答:解:如图
9、,将点A先向下平移3格,再向左平移1格到达A点,连接AB,与线段AC交于点OAO=OB=,AO=OC=2,线段AB与线段AC互相平分,又AOA=45+45=90,ABAC,线段AB与线段AC互相垂直平分故选:D点评:本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键3已知线段CD是由线段AB平移得到的,点A(1,4)的对应点为C(4,7),则点B(4,1)的对应点D的坐标为()A(1,2)B(2,9)C(5,3)D(9,4)考点:坐标与图形变化-平移专题:常规题型分析:根据点A、C的坐标确定出平移规律,再求出点D的坐标即可解答:解:点A(1,4)的对应点为C(4,7),平
10、移规律为向右5个单位,向上3个单位,点B(4,1),点D的坐标为(1,2)故选:A点评:本题考查了坐标与图形变化平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减4如图,将边长为4个单位的等边ABC沿边BC向右平移2个单位得到DEF,则四边形ABFD的周长为()A12B16C20D24考点:平移的性质;等边三角形的性质专题:数形结合分析:根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得解答:解:将边长为4个单位的等边ABC沿边BC向右平移2个单位得到DEF,AD=BE=2,各等边三角形的边长均为4四边形ABFD的周长=AD+AB+BE+FE+DF=16故选
11、B点评:本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长5如图,已知EFD=BCA,BC=EF,AF=DC若将ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A梯形B平行四边形C矩形D等边三角形考点:平移的性质;平行四边形的判定分析:首先根据平移后点C与点D重合,AF=DC,得到点A和点F重合,然后根据EFD=BCA,得到BCEF,从而判定所得到的图形形状是平行四边形解答:解:平移后点C与点D重合,AF=DC,点A和点F重合,EFD=BCA,BCEF,BC=EF,所得到的图形形状是平行四边形,故选B点评:本题考查了平移的性质及平行四边形的判
12、定,解题的关键是了解平行四边形的判定定理,难度不大6如图将等腰直角ABC沿BC方向平移得到A1B1C1,若BC=3,ABC与A1B1C1重叠部分面积为2,则BB1=()A1BCD2考点:平移的性质;等腰直角三角形分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,x2x=2,解得x=(舍去负值),B1C=2,BB1=BCB1C=故选:B点评:本题考查了等腰直角三角形的性质,平移的性质关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角
13、形的性质求斜边长7如图,EF是ABC的中位线,AD是中线,将AEF沿AD方向平移到A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知AEF的面积是7,则阴影部分的面积是()A7B14C21D28考点:平移的性质分析:根据三角形的中位线平行于第三边并且等于第三边的一半可知SABC=4SAEF,再根据平移变换只改变图形的位置不改变图形的形状可知SA1E1F1=SAEF,然后列式计算即可得解解答:解:EF是ABC的中位线,SABC=4SAEF=47=28,AEF沿AD方向平移到A1E1F1,SA1E1F1=SAEF=7,阴影部分的面积=2877=14故选B点评:本题考查了平
14、移的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键,难点在于理解三角形的中位线把三角形分成的小三角形的面积等于原三角形的面积的8如图,在RtABC中,C=90,AC=4,将ABC沿CB向右平移得到DEF,若四边形ABED的面积等于8,则平移距离等于()A2B 4 C8D16考点:平移的性质分析:根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解解答:解:将ABC沿CB向右平移得到DEF,四边形ABED的面积等于8,AC=4,平移距离=84=2故选A点评:本题主要考查平移的基本性质:平移不改变图形
15、的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等二填空题(共8小题)9如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到ABC,当两个三角形重叠部分的面积为32时,它移动的距离AA等于4或8考点:平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质专题:几何动点问题分析:根据平移的性质,结合阴影部分是平行四边形,AAH与HCB都是等腰直角三角形,则若设AA=x,则阴影部分的底长为x,高AD=2x,根据平行四边形的面积公式即可列出方程求解解答:解:设AC交AB于H,A=45,D=90AHA是等腰直角三角
16、形设AA=x,则阴影部分的底长为x,高AD=12xx(12x)=32x=4或8,即AA=4或8cm故答案为:4或8点评:考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题10如图,在ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移2个单位后,得到ABC,连接AC,则ABC的周长为12考点:平移的性质分析:根据平移性质,判定ABC为等边三角形,然后求解解答:解:由题意,得BB=2,BC=BCBB=4由平移性质,可知AB=AB=4,ABC=ABC=60,AB=BC,且ABC=60,ABC为等边三角形,ABC的周长=3AB=12故答案
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届中考数学总复习 二十六 图形的平移精练精析1 华东师大版 2021 中考 数学 复习 十六 图形 平移 精练 华东师大
限制150内