2021_2021学年高中数学第三章概率3.2.1古典概型的特征和概率计算公式课时素养评价含解析北师大版必修.doc
《2021_2021学年高中数学第三章概率3.2.1古典概型的特征和概率计算公式课时素养评价含解析北师大版必修.doc》由会员分享,可在线阅读,更多相关《2021_2021学年高中数学第三章概率3.2.1古典概型的特征和概率计算公式课时素养评价含解析北师大版必修.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时素养评价十九古典概型的特征和概率计算公式(20分钟35分)1.下列是古典概型的是()A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止【解析】选C.A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项中满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性,故D不是.2.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为()
2、A.B.C.D.【解析】选B.所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,所以P=.3.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【解析】选D.依题意,记两次抽得卡片上的数字依次为a,b,则一共有25个不同的数组(a,b),其中满足ab的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为=.4.从2,3,
3、8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是_.【解析】由题意得,a,b有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法.若满足logab为整数,则仅有a=2,b=8和a=3,b=9两种情况,所以logab为整数的概率为=.答案:5.下列随机事件:某射手射击一次,可能命中0环,1环,2环,10环;一个小组有男生5人,女生3人,从中任选1人进行活动汇报;一只使用中的灯泡寿命长短;抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;中秋节前夕,某市工商部门调查辖区
4、内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有_.【解析】题号判断原因分析不属于命中0环,1环,2环,10环的概率不一定相同属于任选1人与学生的性别无关,仍是等可能的不属于灯泡的寿命是任何一个非负实数,有无限多种可能属于该试验结果只有“正”“反”两种,且机会均等不属于该品牌月饼评“优”与“差”的概率不一定相同答案:6.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同
5、).(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.【解析】(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2),(B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为=,不中奖的概率为1-=.故这种说法不正确.(30分钟
6、60分)一、选择题(每小题5分,共25分)1.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x,第二次摸到的球的编号为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为()A.B.C.D.【解析】选A.由题意可知两次摸球得到的所有数对(x,y)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy=4的数对有(1,4),(2,2),(4,1),共3个.
7、故所求事件的概率为.2.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A.B.C.D.【解析】选C.从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为.3.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球
8、.从袋中任取两球,两球颜色为一白一黑的概率等于()A.B.C.D.【解析】选B.袋中的1个红球、2个白球和3个黑球分别记为a,b1,b2,c1,c2,c3.从袋中任取两球有a,b1,a,b2,a,c1,a,c2,a,c3,b1,b2,b1,c1,b1,c2,b1,c3,b2,c1,b2,c2,b2,c3,c1,c2,c1,c3,c2,c3,共15个基本事件.其中满足两球颜色为一白一黑的有b1,c1,b1,c2,b1,c3,b2,c1,b2,c2,b2,c3,共6个基本事件.所以所求事件的概率为=.4.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2021 学年 高中数学 第三 概率 3.2 古典 特征 计算 公式 课时 素养 评价 解析 北师大 必修
链接地址:https://www.taowenge.com/p-28272083.html
限制150内