八年级数学教案模板汇编7篇.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级数学教案模板汇编7篇.docx》由会员分享,可在线阅读,更多相关《八年级数学教案模板汇编7篇.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级数学教案模板汇编7篇 八年级数学教案 篇1 教学目标 知识与技能 用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤. 过程与方法 1.通过设置问题串,让学生体会分析复杂问题的思考方法. 2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型. 情感态度与价值观 在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神. 教学重点 1.初步体会列方程组解决实际问题的步骤. 2.学会用图表 分析较复杂的数量关系问题
2、。 教学难点 将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。 教学准备: 教具:教材,课件,电脑(视频播放器) 学具:教材,练习本 教学过程 第一环节:复习提问(5分钟,学生口答) 内容:填空: (1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为 . (2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 . (3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的
3、右边,将得到一个新的四位数,那么这个四位数用代数式可表示为 . 第二环节:情境引入(10分钟,学生动脑思考,全班交流) 内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能 确定小明在12:00时看到的里程碑上的数吗? 第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题) 内容:例1 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数. 学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.
4、第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流) 内容:练习 1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1.这个两位数是多少? 2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数. 第五环节:课堂小结(5分钟,教师引导学生总结一般步骤) 内容: 1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流. 2.师生互相交流总结出列方程(组)解决实际问题的一般步骤. 第 六环节:布置作业 内容:习题7.6 A组(优等生) 2,
5、3,4 B组(中等生)2、3 C组(后三分之一生)2 八年级数学教案 篇2 知识结构: 重点与难点分析: 本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙
6、述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这
7、样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎
8、样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握等腰三角形的判定定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:等腰三角形的判定定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复
9、习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,ABC中,B=C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常
10、添的辅助线,学生可找出作BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理. 证明三角形是等边三角形的.方法:等
11、边三角形定义;推论1;推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性它与相邻的内角互补;它等于与它不相邻的两个内角的和.要证AB=AC,可先证明B=C,因为已知1=2,所以可以设法找出B、C与1、2的关系. 已知:CAE是ABC的外角,1=2,ADBC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,B=D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造
12、一个以 CB、CD为腰的等腰三角形,连结BD,需证CBD=CDB,但已知B=D,由AB=AD可证ABD=ADB,从而证得CDB=CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE/BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE/BC(已知)
13、, BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 八年级数学教案 篇3 教学建议 1、平行线等分线段定理 定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。 注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。 定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。 2、平行线等分线
14、段定理的推论 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 记忆方法:“中点”+“平行”得“中点”。 推论的用途:(1)平分已知线段;(2)证明线段的倍分。 重难点分析 本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。 本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教
15、学中要加以注意。 教法建议 平行线等分线段定理的引入 生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑: 从生活实例引入,如刻度尺、作业本、栅栏、等等; 可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。 教学设计示例 一、教学目标 1、使学生掌握平行线等分线段定理及推论。 2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。 3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。 4、通过本节学习,体会图形语言和符号语言的和谐美 二、教法设计
16、 学生观察发现、讨论研究,教师引导分析 三、重点、难点 1、教学重点:平行线等分线段定理 2、教学难点:平行线等分线段定理 四、课时安排 l课时 五、教具学具 计算机、投影仪、胶片、常用画图工具 六、师生互动活动设计 教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习 七、教学步骤 【复习提问】 1、什么叫平行线?平行线有什么性质。 2、什么叫平行四边形?平行四边形有什么性质? 【引入新课】 由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线
17、截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等? (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理) 平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。 注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。 下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。 已知:如图,直线 , 。 求证: 。 分析1:如图把已知相等的线段平移,与要求证的两条线
18、段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。 (引导学生找出另一种证法) 分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。 证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。 , 又 , , 为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。 引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。 再引导学生观察下图,在 中, , ,则
19、可得到 ,由此得出推论2。 推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。 注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。 接下来讲如何利用平行线等分线段定理来任意等分一条线段。 例 已知:如图,线段 。 求作:线段 的五等分点。 作法:作射线 。 在射线 上以任意长顺次截取 。 连结 。 过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。 、 、 、 就是所求的五等分点。 (说明略,由学生口述即可) 【总结、扩展】 小结: (l)平行线等分线段定理及推论。 (2)定理的证明只取三条平行线,是在较简单的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学教案 模板 汇编
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内