湖南省岳阳市2020届高三第一次模拟考试理科数学试题逐题精品解析.docx
《湖南省岳阳市2020届高三第一次模拟考试理科数学试题逐题精品解析.docx》由会员分享,可在线阅读,更多相关《湖南省岳阳市2020届高三第一次模拟考试理科数学试题逐题精品解析.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 逐题精品解析2020 年湖南省岳阳市高考高三数学一模试卷(理科)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的)= x | -3 x 3, B = x | x - 4x -5 0=1设全集为 R ,集合 A2,则(-3, 3)DAI B()R(-3, 0)(-3, -1(-3, -1)CAB答案为:BC B =x -15,解析如下:由题首先计算集合 B 的补集然后与集合 A 取交集即可由题或 xRAI B =( -3,-1,故选 BR(1+ 2i )z = 3-4i=2已知复数 满足,则 z()z5A 2B5C 5D2答案为:
2、C( )( )3- 4i 1- 2i-5-10iz = -1- 2i , -1- 2i = 5,故选 .解析如下: ( )( )C1+ 2i 1- 2i5a,b,c= -lna ,e-b = -lnb ,e-c = lnc ,则(3设均为正数,且ea)a b c b ac a bCb a cAcBD答案为:D解析如下:在同一坐标系中分别画出 y= e , y = ey =ln x= -lny = exx 的图象, 与, yx-xy = -ln x 的交点的横坐标为a , y= e= -lny = ex 的图象的交点的横坐标为b , 与与 y-x-xy = ln x 0且 t 1)为常数,则 P
3、 点的表成果之一:平面上一点 P 到两定点的距离之满足| PB |11轨迹为圆已知圆O : x + y =1和 A(- ,0) ,若定点 B(b,0) (b - )和常数l 满足:对圆2222| MB| = | MA|l=DO 上任意一点 M ,都有,则l, MAB 面积的最大值为 逐题精品解析34答案为:2 ,1(x, y)| MB |= | MA |( - ) + = ( + ) + 解析如下:设点 M,由l,得x b2y2l x22y2 ,整理得212l2b-2b + l24= 0,yx2+ y2-x +1- l21- l2M2 + lb2= 01- l2BAOx=2 ,b = -2l解
4、得1所以l2b -24= -1 1-l234(0,1) M (0, -1) (或 时, S) =DMAB max如右图,当 M三、解答题(本大题共 7 小题,共 70 分解答应写出文字说明、证明过程或演算步骤)(一)必考题:共 60 分DABCacsin A = 3 sin B中,角 A , , 的对边分别为 , , ,BC b17(本小题满分 12 分)在且 = .b c(1)求角 A 的大小;(2)若 a =2 3,角 的平分线交BACD于点 D,求 ABD 的面积.解析如下:(1)由sin A = 3 sin B 及正弦定理知a = 3b,2 分= c又b,由余弦定理得b2+ c2- a
5、2b2+ b2b22-3b21cosA = -.4 分5 分6 分2bc22p( )A 0,p,A=.3p= C =(2)由(1)知 B,6又 a =2 3D= 2,在 ABC 中,由正弦定理知: AB ,8 分ABADpp=ABD=, D =DABD在中,由正弦定理及sin D sin ABD124解得 AD =3 -1,10 分12 分3- 3故 S=.2DABD18. (本小题满分 12 分 )如图,在三棱锥 P- ABC 中,D PAC为正三角形,M 为棱 PA 的中点,1AB AC , AC=BC ,平面 PAB 平面 PAC2PAC ;(1)求证:平面 ABC平面21(2)若Q 是
6、棱 AB 上一点, PQ 与平面 ABC 所成角的正弦值为,求二面角Q- MC - A的7正弦值 逐题精品解析PMCAQB解析如下:(1) 因为D PAC 为正三角形, M 为棱 PA 的中点,所以CM PA 1 分PAC= PA又平面 PAB 平面 PAC ,且平面 PAB I 平面所以CM 平面 PAB3 分= C所以CM AB ,又 AB AC ,且 AC I CM所以 AB 平面 PAC ,又 AB 平面 ABCPAC5 分所以平面 ABC平面(2) 作 AC 中点O ,连OP ,由(1)及OP AC 可知OP 平面ABCx, zy以O 为坐标原点,OA,OP分别为轴,过O 且平行于
7、AB 的方向为 轴,如图,建立空间直角坐标系zPCMOAxyQB= 2设 AC则O(0,0,0) , P(0,0, 3) ,A(1,0,0) , C(- 1,0,0),13M ( , 0, ) , B(1,2 3,0) ,6 分22uuuruuuruuurQ(1,2 3l ,0) PQ = (1,2 3l ,- 3)设 AQ l AB ,则,7 分ur= (0,0,1)设平面 ABC 的法向量为n,1217因为 PQ 与平面 ABC 所成角的正弦值为ur uuur| n gPQ |2173211=l =,解得ur uuur1所以,即| n | PQ |7212 + 4l21(1, 3,0)即Q
8、 为的中点,则Q9 分ABuur= ( , , )设平面QMC 的法向量为nx y z ,则2uur uuurn gCQ(x, y, z)g(2, 3,0) = 0=0 2x+3y=0uur2uuuur n gCM,即,( , , ) ( ,0, 3) = 03= 0z3 + 3 = 0 x y z g x222 逐题精品解析uur= ( 3,- 2,- 3)取 n2设平面10 分uuruur= (0,1,0)的法向量为n ,则nAMC33u ur u urn gnur uur1则二面角Q- MC - A 的余弦值为cosq = - u=11 分12 分23| n | n | 2233故sin
9、q =2x2y2: + =1(a b 0)经过点19(本小题满分 12 分)在平面直角坐标系中,已知椭圆 ExOya2b2( )P 2,2 ,离心率为22(1)求 的方程;EA,B, kk + k =0(2)过点 P 斜率为 k的两条直线分别交椭圆 E 于两点,且满足1212证明:直线 AB 的斜率为定值2x2y2k=AB解析如下:(1)+= 1(2)842b 1cb222= = 1- =(1) 依题意,e,所以1 分2a 22aa2( )422,21+= ,2 分4 分5 分又椭圆 E 过点 P,所以a2b2=8,b =4 ,解得a22x2y2+= 1所以椭圆 的方程为E84(x ,y )
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 岳阳市 2020 届高三 第一次 模拟考试 理科 数学试题 精品 解析
限制150内