高中数学必修一函数的几种表示方法公开课教案课件课时训练练习教案课件.doc
《高中数学必修一函数的几种表示方法公开课教案课件课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修一函数的几种表示方法公开课教案课件课时训练练习教案课件.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1. 2.2 函数的表示方法第一课时 函数的几种表示方法【教学目标】1掌握函数的三种主要表示方法2能选择恰当的方法表示具体问题中的函数关系3会画简单函数的图像【教学重难点】教学重难点:图像法、列表法、解析法表示函数 【教学过程】一、复习引入:1函数的定义是什么?函数的图象的定义是什么?2在中学数学中,画函数图象的基本方法是什么?3用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?二、讲解新课:函数的表示方法表示函数的方法,常用的有解析法、列表法和图象法三种.解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如
2、,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.列表法:就是列出表格来表示两个变量的函数关系.例如,学生的身高 单位:厘米学号123456 789身高125135140156138172 167158169数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.图象法:就是用函数图象表示
3、两个变量之间的关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买 x1,2,3,4个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像解:这个函数的定义域集合是1,2,3,4,函数的解析式为y=5x,x1,2,3,4.它的图象由4个孤立点A (1, 5)B (2, 10)C (3, 15)D (4, 20)组成,如图所示变式
4、练习1 设 求fg(x)。 解: 例2作出函数的图象列表描点:变式练习2 画出函数y=x与函数y=x2的图象四、小结 本节课学习了以下内容:函数的表示方法及图像的作法【板书设计】一、 函数的表示方法二、 典型例题例1: 例2:小结:【作业布置】课本第56习题2.2:1,2,3,41.2.2 函数的表示方法第一课时 函数的几种表示方法一 、 预习目标 通过预习理解函数的表示二 、预习内容 1.列表法:通过列出 与对应 的表来表示 的方法叫做列表法2.图象法:以 为横坐标,对应的 为纵坐标的点 的集合,叫做函数y=f(x)的图象,这种用“图形”表示函数的方法叫做图象法.3.解析法(公式法):用 来
5、表达函数y=f(x)(xA)中的f(x),这种表达函数的方法叫解析法,也称公式法。4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着 ,这样的函数通常叫做 。三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一 、学习目标1掌握函数的三种主要表示方法2能选择恰当的方法表示具体问题中的函数关系3会画简单函数的图像学习重难点:图像法、列表法、解析法表示函数二 、 学习过程表示函数的方法,常用的有解析法、列表法和图象法三种.解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如,s=60,A=
6、,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.列表法:就是列出表格来表示两个变量的函数关系.例如,学生的身高 单位:厘米学号123456789身高125135140156138172167158169 数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.图象法:就是用函数图象表示两个变量之间的关系
7、.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买 x1,2,3,4个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像变式练习1 设 求fg(x)。例2作出函数的图象变式练习2 画出函数y=x与函数y=x2的图象三 、当堂检测课本第56页练习1,2,3课后练习与提高1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线yf
8、(x)(实线表示),另一种是平均价格曲线yg(x)(虚线表示)如f(2)3是指开始买卖后两个小时的即时价格为3元;g(2)3表示两个小时内的平均价格为3元,下图给出的四个图象中,其中可能正确的是( )2.函数f(x+1)为偶函数,且x1时,f(x)x2+1,则x1时,f(x)的解析式为( )A.f(x)x2-4x+4 B.f(x)x2-4x+5C.f(x)x2-4x-5 D.f(x)x2+4x+53.函数的图象的大致形状是( )4.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的的长为l,弦AP的长为d,则函数df(l)的图象大致是( )5.用一根长为
9、12m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_.6.已知定义域为R的函数f(x)满足ff(x)-x2+xf(x)-x2+x.(1)若f(2)3,求f(1);又若f(0)a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)x0,求函数f(x)的解析表达式.解答:1 解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C.答案:C2 解析:因为f(x+1)为偶函数,所以f(-x+1)f(x+1),即f(x)f(2-x). 当x1时,2-x1,此时,f(2-x)(2-x)2+1,即f(x)x2-4x+5.答
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 函数 表示 方法 公开 教案 课件 课时 训练 练习
限制150内