高中数学必修一高一数学第五章(第课时)向量的加法与减法()公开课教案课件课时训练练习教案课件.doc





《高中数学必修一高一数学第五章(第课时)向量的加法与减法()公开课教案课件课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修一高一数学第五章(第课时)向量的加法与减法()公开课教案课件课时训练练习教案课件.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课 题:向量的加法与减法(1)教学目的:掌握向量加法的定义会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量掌握向量加法的交换律和结合律,并会用它们进行向量计算 教学重点:用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.教学难点:向量的加法和减法的定义的理解授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.向量的概念:我们把既有大小又有方向的量叫向量2.向量的表示方法:用有向线段表示;用字母、等表示;用有向线段的起点与终点字母:;向量的大小长度称为向量的模,记作|. 3.零向量、单位向量概念:长度为0的向量叫零向量,记作的方向是任意
2、的长度为1个单位长度的向量,叫单位向量.零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.向量、平行,记作.5.相等向量定义:长度相等且方向相同的向量叫相等向量.(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.7.对
3、向量概念的理解的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度;既有大小又有方向的量,我们叫做向量,有二个要素:大小、方向.向量不能比较大小;实数与向量不能相加减,但实数与向量可以相乘.向量与有向线段的区别:向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段二、讲解新课: 1 向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边
4、形法则(对于两个向量共线不适应)课本中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的如图,已知向量、在平面内任取一点,作,则向量叫做与的和,记作,即 特殊情况:对于零向量与任一向量,有 探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|,则+的方向与相同,且|+|=|-|;若|,则+的方向与相同,且|+b|=|-|.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加 2向量加法的交换律:+=+3向量加法的结合律:(+) +=+ (+)证:如图:使
5、, , 则(+) +=+ (+) =(+) +=+ (+)从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行三、讲解范例:例1如图,一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,求船的实际航行的速度的大小与方向(用与流速间的夹角表示).解:设表示船垂直于对岸行驶的速度,表示水流的速度,以AD,AB为邻边作平行四边形ABCD,则就是船的实际航行的速度.在中,所以因为答:船的实际航行的速度的大小为,方向与水流速间的夹角为四、课堂练习:1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度2、一艘船距对岸,以的速度向垂直于对岸的方向
6、行驶,到达对岸时,船的实际航程为8km,求河水的流速3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h五、小结 1向量加法的几何法则;2交换律和结合律;3注意:|+| | + |,当且仅当方向相同时取等号六、课后作业:2、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小3、用向量加法证明:两条对角线互相平分的四边形是平行四边形七、板书设计(略)八、课后
7、记: 下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 一高一 数学 第五 课时 向量 加法 减法 公开 教案 课件 训练 练习

链接地址:https://www.taowenge.com/p-28303771.html
限制150内