高中数学必修一高中数学必修公开课教案--幂函数公开课教案课件课时训练练习教案课件.doc
《高中数学必修一高中数学必修公开课教案--幂函数公开课教案课件课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修一高中数学必修公开课教案--幂函数公开课教案课件课时训练练习教案课件.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3 幂函数整体设计教学分析 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究yx,yx2,yx3,yx-1,yx等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数0时,幂函
2、数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x2,y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,
3、应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析.三维目标1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣.2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们
4、认识世界的过程中的作用,从而激发学生的学习欲望.3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力.重点难点教学重点:从五个具体的幂函数中认识幂函数的概念和性质.教学难点:根据幂函数的单调性比较两个同指数的指数式的大小.课时安排1课时教学过程导入新课思路11.如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?根据函数的定义可知,这里p是w的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的
5、函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.4.如果正方形场地面积为S,那么正方形的边长a=S,这里a是S的函数.5.如果某人t s内骑车行进了1 km,那么他骑车的速度v=t-1km/s,这里v是t的函数.以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).思路2.我们前面学习了三类具体的初等函数:二次函数、指数函数和对数函数,这一节课我们再学习一种新的函数幂函数,教师板书课题:幂函数.推进新课新知探究提出问题问题:给出下列函数
6、:y=x,y=x,y=x2,y=x-1,y=x3,考察这些解析式的特点,总结出来,是否为指数函数?问题:根据,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.问题:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题:画出y=x,y=x,y=x2,y=x-1,y=x3五个函数图象,完成下列表格.函数 性质y=xy=x2y=x3y=xy=x-1定义域值域奇偶性单调性特殊点图象分布问题:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?问题:通过对以上五
7、个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示.讨论结果:通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称
8、这种类型的函数为幂函数,如果我们用字母来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=x(xR)的函数称为幂函数,其中x是自变量,是常数.如y=x2,y=x,y=x3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x,y=x2,y=
9、x3,y=x-1的图象.列表:x-3-2-10123y=x-3-2-10123y=x011.411.73y=x29410149y=x3-27-8-101827y=x-1-11描点、连线.画出以上五个函数的图象如图2-3-1.图2-3-1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.通过观察图象,完成表格. 函数 性质 y=xy=x2y=x3y=xy=x-1定义域RRRx|x0x|x0值域Ry|y0Ry|y0y|y0奇偶性奇奇奇非奇非偶奇单调性在第象限单调递增在第象限单调递增在第象限单调递增在第象限单调递增在第
10、象限单调递减特殊点(1,1)(1,1)(1,1)(1,1)(1,1)图象分布第、象限第、象限第、象限第象限第、象限第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.幂函数y=x的性质.(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1)(原因:1x=1);(2)当0时,幂函数的图象都通过原点,并且在0,+)上是增函数(从左往右看,函数图象逐渐上升).特别地,当1时,x(0,1),y=x2的图象都在y=x图象的下方,形状向下凸,越大,下凸的程度越大.当01时,x(0,1),y=x2的图象都在y=x
11、的图象上方,形状向上凸,越小,上凸的程度越大.(3)当0时,幂函数的图象在区间(0,+)上是减函数.在第一象限内,当x向原点靠近时,图象在y轴的右方无限逼近y轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼近x轴的正半轴.应用示例思路1例1判断下列函数哪些是幂函数.y=0.2x;y=x-3;y=x-2;y=x.活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=x(xR)的函数称为幂函数,变量x的系数为1,指数是一个常数,严格按这个标准来判断.解:y=0.2x的底数是0.2,因此不是幂函数;y=x-3的底数是变量,指数是常数,因此是幂函数;y=x-2
12、的底数是变量,指数是常数,因此是幂函数;y=x的底数是变量,指数是常数,因此是幂函数.点评:判断函数是否是幂函数要严格按定义来判断.变式训练判别下列函数中有几个幂函数?y=x;y=2x2;y=x;y=x2+x;y=-x3.解:的底数是变量,指数是常数,因此是幂函数;的变量x2的系数为2,因此不是幂函数;的变量是和的形式,因此也不是幂函数;的变量x3的系数为-1,因此不是幂函数.例2求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x,(2)y=x,(3)y=x-2.活动:学生思考,小组讨论,教师引导,学生展示思维过程,教师评价.根据你的学习经历,回顾求一个函数的定义域的方法,判断函数奇偶
13、性、单调性的方法.判断函数奇偶性、单调性的方法,一般用定义法.解决有关函数求定义域的问题时,可以从以下几个方面来考虑:列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域.解:(1)要使函数y=x有意义,只需y=有意义,即xR.所以函数y=x的定义域是xR.又f(-x)=f(x),所以函数y=x是偶函数,它在(-,0上是减函数,在0,+)上是增函数.(2)要使函数y=x有意义,只需y=有意义,即xR+,所以函数y=x的定义域是R+,由于函数y=x的定义域不关于原点对称,所以函数y=x是非奇非偶的函数,它在(0,+)上是减函数.(3)要使函数y=x-2有意义,只需y=有意义,即x
14、0,所以函数y=x-2的定义域是x0,又f(-x)=f(x),所以函数y=x-2是偶函数,它在(-,0)上是增函数,在(0,+)上是减函数.点评:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域,求函数的定义域的本质是解不等式或不等式组.例3证明幂函数f(x)=在0,+)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导.证明函数的单调性一般用定义法,有时利用复合函数的单调性.证明:任取x
15、1,x20,+),且x1x2,则f(x1)-f(x2)=,因为x1-x20,x1+x20,所以0.所以f(x1)f(x2),即f(x)=在0,+)上是增函数.点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x1)与f(x2)的符号要一致.思路2例1函数y(x2-2x)的定义域是( )A.x|x0或x2 B.(-,0)(2,)C.(-,02,) D.(0,2)分析:函数y(x2-2x)化为y=,要使函数有意义需x2-2x0,即x2或x0,所以函数的定义域为x|x2或x0.答案:B变式训练函数y(1-x2)的值域是( )A.0,) B.(0,1 C.(0,1) D.0,1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 公开 教案 函数 课件 课时 训练 练习
限制150内