高中数学必修一高一数学第二章(第七课时)函数单调性公开课教案课件课时训练练习教案课件.doc
《高中数学必修一高一数学第二章(第七课时)函数单调性公开课教案课件课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修一高一数学第二章(第七课时)函数单调性公开课教案课件课时训练练习教案课件.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课 题:2.3.2函数的单调性2教学目的:1. 巩固函数单调性的概念;熟练掌握证明函数单调性的方法和步骤;初步了解复合函数单调性的判断方法.2.会求复合函数的单调区间. 明确复合函数单调区间是定义域的子集.教学重点:熟练证明函数单调性的方法和步骤.教学难点:单调性的综合运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.对于函数的定义域I内某个区间上的任意两个自变量的值若当时,都有,则说在这个区间上是增函数;若当,则说在这个区间上是减函数.2.若函数在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函
2、数是这一区间上的单调函数.3.判断证明函数单调性的一般步骤是:设,是给定区间内的任意两个值,且;作差,并将此差式变形(要注意变形的程度);判断的正负(要注意说理的充分性);根据的符号确定其增减性.二、讲解新课:1函数单调性的证明例1判断并证明函数的单调性证明:设则 ,,即 (注:关键的判断)在R上是增函数. 2复合函数单调性的判断对于函数和,如果在区间上是具有单调性,当时,且在区间上也具有单调性,则复合函数在区间具有单调性的规律见下表:增 减 增 减 增 减 增 减 减 增 以上规律还可总结为:“同向得增,异向得减”或“同增异减”.证明:设,且在上是增函数,且在上是增函数,.所以复合函数在区间
3、上是增函数设,且,在上是增函数,且在上是减函数,.所以复合函数在区间上是减函数设,且,在上是减函数,且在上是增函数,.所以复合函数在区间上是减函数设,且,在上是减函数,且在上是减函数,.所以复合函数在区间上是增函数例2求函数的值域,并写出其单调区间解:题设函数由和复合而成的复合函数,函数的值域是,在上的值域是.故函数的值域是.对于函数的单调性,不难知二次函数在区间上是减函数,在区间上是增函数;二次函数区间上是减函数,在区间上是增函数当时,即,或.当时,即,.因此,本题应在四个区间,上考虑 当时,而在上是增函数,在上是增函数,所以,函数在区间上是增函数当时,而在上是增函数,在上是减函数,所以,函
4、数在区间上是减函数当时,而在上是减函数,在上是减函数,所以,函数在区间上是增函数当时,而在上是增函数,在上是减函数,所以,函数在区间上是减函数综上所述,函数在区间、上是增函数;在区间、上是减函数另外,本题给出的复合函数是偶函数,在讨论具有奇偶性的函数的单调性时,应注意应用其奇函数或偶函数的性质,以使解题过程简捷、清楚、具有条理性三、课堂练习:课本P60练习:3,4 四、小结 本节课学习了以下内容:函数单调性的证明方法五、课后作业:课本第60习题2.3:4,5,6,7六、板书设计(略)七、课后记:下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人
5、都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境
6、做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 一高一 数学 第二 第七 课时 函数 调性 公开 教案 课件 训练 练习
限制150内