高中数学必修一第九章直线平面简单几何体(B)(第课)直线与平面所成的角和二面角(二)公开课教案课件课.doc
《高中数学必修一第九章直线平面简单几何体(B)(第课)直线与平面所成的角和二面角(二)公开课教案课件课.doc》由会员分享,可在线阅读,更多相关《高中数学必修一第九章直线平面简单几何体(B)(第课)直线与平面所成的角和二面角(二)公开课教案课件课.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课 题:97直线与平面所成的角和二面角(二)教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法:(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理教学重点:二面角的概念和二面角的平面角的作法教学难点:二面角的平面角的一般作法及其寻求授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1 斜线,垂线,射影垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段. 斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个
2、平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上2射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中射影相交两条斜线相交;射影较长的斜线段也较长相等的斜线段射影相等,较长的斜线段射影较长垂线段比任何一条斜线段都短OB=OCAB=AC OBOCABACAB=ACOB=OC ABACOBOCOAAB,OAAC3直
3、线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0角.直线和平面所成角范围: 0,(2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角4公式:已知平面a的斜线a与a内一直线b相交成角,且a与a相交成j1角,a在a上的射影c与b相交成j2角,则有.二、讲解新课:1 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为,两个面
4、分别为的二面角记为;二面角的图形表示:第一种是卧式法,也称为平卧式:第二种是立式法,也称为直立式:2二面角的平面角: (1)过二面角的棱上的一点分别在两个半平面内作棱的两条垂线,则叫做二面角的平面角(2)一个平面垂直于二面角的棱,且与两半平面交线分别为为垂足,则也是的平面角说明:(1)二面角的平面角范围是;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直三、讲解范例:例1 在正四面体中,求相邻两个平面所成的二面角的平面角的大小解:取的中点,连接,正四面体,于,为二面角的平面角,方法一:设正四面体的棱长为1,则,由余弦定理得方法二:(向量运算)令,棱长为1,又,即相邻
5、两个平面所成的二面角的平面角的大小为例2在棱长为1的正方体中,(1)求二面角的大小;(2)求平面与底面所成二面角的平面角大小解:(1)取中点,连接,正方体,即为二面角的平面角,在中,可以求得即二面角的大小为(2)过作于点,正方体,平面,为平面与平面所成二面角的平面角,可以求得:所以,平面与底面所成二面角的平面角大小为说明:求二面角的步骤:作证算答例3已知:二面角且到平面的距离为,到的距离为,求二面角的大小解:作于点,平面于点,连接,于点,于点,即为二面角的平面角,易知,即二面角的大小为说明:利用三垂线定理作二面角的平面角是解决二面角问题中一种重要的方法,其特征是其中一个平面内一点作另一个平面的
6、垂线则已经有三种作二面角的平面角的方法,即:定义法、垂面法、三垂线法例4如图,平面,若,求二面角的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角解:过作于,过作交于,连结,则垂直于平面,为二面角的平面角,又平面,平面,又,平面,设,则,在中,同理,中, ,所以,二面角的正弦值为四、课堂练习:1如图所示,已知面,二面角的平面角为,求证:证明:过作的垂线,垂足为,连接平面,平面,为二面角的平面角,即面 是直角三角形 又 即说明:这是推广的射影定理,也是求二面角平面角的一种方法2如图,在空间四边形中,是正三角形,是等腰直角三角形,且,又二面角为直二面角,求二面角的大小解:过作于二面角为直二
7、面角 面取中点,为中点,连接 为二面角的平面角令,则 在中即二面角的大小为3设在平面内的射影是直角三角形的斜边的中点,求(1)与平面所成角的大小;(2)二面角的大小;(3)异面直线和的大小解:(1)面 为与面所成角 即与平面所成角的大小为(2)取中点,连接 又面 为二面角的平面角又 即二面角的大小为(3)取的中点,连接,则与所成的锐角或直角即为异面直线和所成角易求得即异面直线和所成角为五、小结 :1.二面角的定义、画法. 2.二面角的平面角的定义、作法. 3.求简单的二面角的大小.六、课后作业:七、板书设计(略)八、课后记:下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对
8、于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 第九 直线 平面 简单 几何体 二面角 公开 教案 课件
链接地址:https://www.taowenge.com/p-28309918.html
限制150内