选修2-3ppt课件2.3.1离散型随机变量的均值优质课.ppt
《选修2-3ppt课件2.3.1离散型随机变量的均值优质课.ppt》由会员分享,可在线阅读,更多相关《选修2-3ppt课件2.3.1离散型随机变量的均值优质课.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.1离散型随机变量的均值离散型随机变量的均值一、引入甲、乙两人射击的概率分布表为:y(环数)8910P(概率)0.50.20.3如何比较两人的射击水平呢?X(环数)8910P(概率)0.40.50.11 1、离散型随机变量的分布列、离散型随机变量的分布列 XP1xix2x1p2pip2 2、离散型随机变量分布列的性质:、离散型随机变量分布列的性质:(1)pi0,i1,2,;(2)p1p2pi1复习引入复习引入 对于离散型随机变量,可以由它的概率分布列确对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,定与该随机变量相关事件的概率。但在实际问题中,有时
2、我们更感兴趣的是随机变量的某些数字特征。例有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否很重要的是看平均分;要了解某班同学数学成绩是否“两极分化两极分化”则需要考察这个班数学成绩的方差。则需要考察这个班数学成绩的方差。 我们还常常希望我们还常常希望直接通过数字直接通过数字来反映随机变量的某来反映随机变量的某个方面的特征,最常用的有个方面的特征,最常用的有期望与方差期望与方差. .1、某人射击、某人射击10次,所得环数分别是:次,所得环数分别是:1,1,1,1
3、,2,2,2,3,3,4;则所得的平均环数是;则所得的平均环数是多少?多少?2104332221111 X把环数看成随机变量的概率分布列:把环数看成随机变量的概率分布列:X1234P10410310210121014102310321041 X权数权数加权平均加权平均一、离散型随机变量取值的平均值一、离散型随机变量取值的平均值一般地,若离散型随机变量一般地,若离散型随机变量X的概率分布为:的概率分布为:nniipxpxpxpxEX 2211则称则称为随机变量为随机变量X的均值或数学期望。的均值或数学期望。它反映了离它反映了离散型随机变量取值的平均水平。散型随机变量取值的平均水平。P1xix2x
4、1p2pipnxnpX设设YaXb,其中,其中a,b为常数,则为常数,则Y也是也是随机变量随机变量(1) Y的分布列是什么?的分布列是什么?(2) EY=?思考:思考:P1xix2x1p2pipnxnpXnniipxpxpxpxEX 2211P1xix2x1p2pipnxnpXP1xix2x1p2pipnxnpXYbax 1baxi bax 2baxn nnpbaxpbaxpbaxEY)()()(2211 )()(212211nnnpppbpxpxpxa baEX 一、离散型随机变量取值的平均值一、离散型随机变量取值的平均值nniipxpxpxpxEX 2211P1xix2x1p2pipnxn
5、pX二、数学期望的性质二、数学期望的性质baEXbaXE )(1 1、随机变量、随机变量的分布列是的分布列是135P0.50.30.2(1)则则E= . 2、随机变量、随机变量的分布列是的分布列是2.4(2)若若=2+1,则,则E= . 5.847910P0.3ab0.2E=7.5,则则a= b= .0.40.1例例1.篮球运动员在比赛中每次罚球命中得篮球运动员在比赛中每次罚球命中得1分,分,罚不中得罚不中得0分已知某运动员罚球命中的概率为分已知某运动员罚球命中的概率为0.8,则他罚球,则他罚球1次的得分次的得分X的均值是多少?的均值是多少?一般地,如果随机变量一般地,如果随机变量X X服从两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 ppt 课件 2.3 离散 随机变量 均值 优质课
限制150内