2022年高中数学--抽象函数专题 .pdf





《2022年高中数学--抽象函数专题 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学--抽象函数专题 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料欢迎下载【包哥数学】抽象函数专题抽象函数简介抽象函数是指没有给出具体的函数解析式, 只给出它的一些特征、性质或一些特殊关系式的函数, 所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力。抽象函数一些模型根据抽象函数的一些性质,联想到所学的基本初等函数模型,将抽象具体化, 有助于分析问题。抽象函数f(x)具有的性质联想到的函数模型f(x1+x2)=f(x1)+f(x2); f(x1-x2)=f(x1)-f(x2)正比例函数模型:f(x)=kx (k0)f(x1+x2)=f(x1) f(x2); f(x1-x2)=f(x1) f(x2)指数函数模型:f(x
2、)=(a0且a1)f(x1 x2)=f(x1)+f(x2); f(x1 x2)=f(x1)-f(x2); (x1,x2R+)对数函数模型:f(x)=(a0且a1)例题:例 1:f (x) 在 R+上是增函数,且f (x)=f (yx)+f (y), 若 f (3)=1,f (x) f (51x) 2 ,求 x 的范围 。例 2:设函数f(x) 的定义域为R,对于任意实数m、n,总有 f(m+n)=f(m) f(n) ,且 x0 时,0f(x)1. (1)证明: f(0)=1 ;且 x1; (2)证明: f(x) 在 R 上单调递减;(3)设 A=(x,y) f (x2) f(y2)f(1),B
3、= (x,y) f (ax-y+2)=1,a R ,若 A B=?,确定 a的范围。抽象函数的对称性(中心对称、轴对称)和周期性先深刻理解奇函数,偶函数概念方法:用哪个数代替x 一、 抽象函数的对称性定理 1.若函数 y=f (x) 定义域为R,且满足条件:f (a+x)=f (b x),则函数 y=f (x) 的图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页精品资料欢迎下载象关于直线x= 对称。推论 1. 若函数 y=f (x) 定义域为R,且满足条件:f (a+x)=f (a x) (或 f (2ax)= f (x) ),
4、 则函数 y=f (x) 的图像关于直线x= a 对称。推论 2. 若函数 y=f (x) 定义域为R,且满足条件:f (a+x)=f (ax), 又若方程f (x)=0 有 n个根,则此n 个根的和为na 。定理 2. 若函数 y=f (x) 定义域为R,且满足条件: f (a+x)+f (b x)=c, (a,b,c为常数),则函数 y=f (x) 的图象关于点对称。推论 1.若函数 y=f (x) 定义域为R,且满足条件: f (a+x)+f (a x)=0, (a为常数),则函数 y=f (x) 的图象关于点(a ,0)对称。了解定理 3.若函数 y=f (x) 定义域为R,则函数 y
5、=f (a+x) 与 y=f (b x)两函数的图象关于直线x=对称。对任意 x0,令 a+x0=b-x1, 则 x0+x1=b-a 此时令 y=f(a+x0)=f(b-x1), 则(x0,y) 在第一个函数图像上,(x1,y) 在第二个函数图像上因为 x0+x1=b-a,所以有 x0-(b-a)/2=(b-a)/2-x1,(x0,y) 和(x1,y) 关于直线x=(b-a)/2 对称所以这两个函数的图像关于直线x=(b-a)/2 是对称的定理 4.若函数 y=f (x) 定义域为R,则函数y=f (a+x) 与 y=c f (b x)两函数的图象关于点对称。二、抽象函数的周期性命题 1:若
6、a是非零常数,对于函数y=f(x) 定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数 . 函数 y=f(x) 满足 f(x+a)= f(x) ,则 f(x) 是周期函数,且2a 是它的一个周期. 函数 y=f(x) 满足 f(x+a)=1( )fx,则 f(x)是周期函数,且2a是它的一个周期. 函数 y=f(x) 满足 f(x+a)+f(x)=1 ,则 f(x) 是周期函数,且2a 是它的一个周期. 2ab(,)22ab c2ba(,)22ba c精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页精品资料欢迎下载命
7、题 2:若 a、 b(ab)是非零常数,对于函数y=f(x) 定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数 . (1) 函数 y=f(x) 满足 f(x+a)=f(x+b) ,则 f(x) 是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b 对称, 则函数 y=f(x) 是周期函数, 且 2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点 N(b,0)对称, 则函数 y=f(x) 是周期函数, 且 2|a-b|是它的一个周期 . (4)函数图象关于直线x=a,及点 M(b,0) 对称,则函数y=f(x) 是周期函数,且4|a
8、-b|是它的一个周期 . 命题 3:若 a是非零常数,对于函数y=f(x) 定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数 . (1)若 f(x) 是定义在R 上的偶函数,其图象关于直线x=a 对称,则f(x) 是周期函数,且2a 是它的一个周期 . (2)若 f(x) 是定义在R 上的奇函数,其图象关于直线x=a 对称,则f(x) 是周期函数,且4a 是它的一个周期 . 我们也可以把命题3 看成命题2 的特例 ,命题 3 中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1) ,其他命题的证明基本类似. 设条件 A: 定义在 R 上的函数 f
9、(x) 是一个偶函数 . 条件 B: f(x) 关于 x=a 对称条件 C: f(x) 是周期函数 ,且 2a 是其一个周期 . 结论 : 已知其中的任两个条件可推出剩余一个. 证明 : 已知 A、B C (20XX 年全国高考第22 题第二问)f(x) 是 R 上的偶函数f(-x)=f(x) 又 f(x) 关于 x=a 对称 f(-x)=f(x+2a) f(x)=f(x+2a) f(x) 是周期函数 ,且 2a 是它的一个周期已知 A、CB 定义在 R 上的函数f(x) 是一个偶函数f(-x)=f(x) 又 2a 是 f(x) 一个周期 f(x)=f(x+2a) f(-x)=f(x+2a)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学-抽象函数专题 2022 年高 数学 抽象 函数 专题

限制150内