固体物理学复习ppt课件.ppt
《固体物理学复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《固体物理学复习ppt课件.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章第一章 晶体结构晶体结构一、几种典型的晶体结构一、几种典型的晶体结构密排六方结构(密排六方结构(hcp): ABABAB 如:如:Mg, Zn, Cd 面心立方结构(面心立方结构(fcc): ABCABC 如:如:Ca,Cu, Al 体心立方结构(体心立方结构(bcc):如:):如:Li, Na, K, Ba 简单立方结构(简单立方结构(sc)金刚石结构:如:金刚石,金刚石结构:如:金刚石,Si, Ge NaCl结构:如:结构:如:NaCl, LiF, KBr CsCl结构:如:结构:如:CsCl, CsBr, CsI 闪锌矿结构:如:闪锌矿结构:如:ZnS, CdS, GaAs, -S
2、iC 二、晶格的周期性二、晶格的周期性晶格晶格 等同点系等同点系 空间点阵空间点阵 数学抽象数学抽象任取一点任取一点格点(或阵点)格点(或阵点)基元:一个格点所代表的物理实体。基元:一个格点所代表的物理实体。格矢:格矢:Rll1a1+l2a2+l3a3基矢:基矢:a1, a2, a3原胞:原胞:1. 空间点阵原胞:空间点阵中最小的重复单元,只含空间点阵原胞:空间点阵中最小的重复单元,只含有一个格点,对于同一空间点阵,原胞的体积相等。有一个格点,对于同一空间点阵,原胞的体积相等。123av a aa2. 晶格原胞:晶格最小的重复单元。晶格原胞:晶格最小的重复单元。3. WignerSeitz原胞
3、:由各格矢的垂直平分面所围成原胞:由各格矢的垂直平分面所围成 的包含原点在内的最小封闭体积。的包含原点在内的最小封闭体积。晶格的分类:晶格的分类:简单晶格:每个晶格原胞中只含有一个原子,即简单晶格:每个晶格原胞中只含有一个原子,即晶格中晶格中 所有原子在化学、物理和几何环境完全等同所有原子在化学、物理和几何环境完全等同 (如:(如:Na、Cu、Al等晶格)等晶格) 。 复式晶格:每个晶格原胞中含有两个或两个以上的原子,复式晶格:每个晶格原胞中含有两个或两个以上的原子, 即晶格中有两种或两种以上的等同原子(或即晶格中有两种或两种以上的等同原子(或 离子)。如:离子)。如:Zn、Mg、金刚石、金刚
4、石、NaCl等晶格。等晶格。倒格矢:倒格矢:Gnn1b1+n2b2n3b3 , n1, n2, n3整数整数倒格子原胞体积:倒格子原胞体积: b= b1b2 b338abv和和2lnhR Gh整数整数要求:给定一组晶格的基矢,会求出其相应的倒格子基矢。要求:给定一组晶格的基矢,会求出其相应的倒格子基矢。 如正格子基矢不垂直,可将其在直角坐标系中投影。如正格子基矢不垂直,可将其在直角坐标系中投影。面心立方(晶格常数为面心立方(晶格常数为a)的倒格子是体心立方(格常数)的倒格子是体心立方(格常数为为4 /a);体心立方(晶格常数为);体心立方(晶格常数为a )的倒格子是面心立)的倒格子是面心立方(
5、格常数为方(格常数为4 /a )。)。三、倒格子三、倒格子倒格子基矢的定义:倒格子基矢的定义:aibj2ij ,i, j=1, 2, 3四、晶体的宏观对称性,点群四、晶体的宏观对称性,点群 32个点群,只要求一般了解即可个点群,只要求一般了解即可五、晶系和五、晶系和Bravais格子格子晶胞:既能反映晶格的周期性又能体现晶体宏观对称晶胞:既能反映晶格的周期性又能体现晶体宏观对称 性特征的最小重复单元。注意与原胞的区别。性特征的最小重复单元。注意与原胞的区别。轴矢坐标系:轴矢坐标系:a,b,c晶胞参量:晶胞参量:a,b,c, , , 轴矢坐标系中的线指数轴矢坐标系中的线指数lmn和面指数和面指数
6、(hkl)七个晶系:七个晶系:根据晶体的对称性特征分类。根据晶体的对称性特征分类。14种种Bravais格子格子(了解)(了解)立方晶系的基矢:立方晶系的基矢:fcc:123122122122aaaabcjkacakiaabijbcc:1231+22122122aaaaa+ bcijkaajcijkaabcijk第二章第二章 晶体的结合晶体的结合一、晶体结合的基本类型及主要特征一、晶体结合的基本类型及主要特征二、晶体中粒子的相互作用二、晶体中粒子的相互作用双粒子模型:双粒子模型: mnabu rrr 晶体的互作用能:晶体的互作用能: mnABU rrr 由平衡条件由平衡条件00rdUdr求出求
7、出r0和和U0结合能:结合能:W U0 0结合能的物理意义:把晶体拆分成彼此没有相互作用的原结合能的物理意义:把晶体拆分成彼此没有相互作用的原 子、离子或分子时,外界所做的功。子、离子或分子时,外界所做的功。体积压缩模量体积压缩模量2020VdPd UKVVdVdV 体积压缩模量的物理意义:产生单位相对体积压缩所需体积压缩模量的物理意义:产生单位相对体积压缩所需 的外加压强。的外加压强。 3VN r晶体体积:晶体体积: 为体积因子,只与结构有关为体积因子,只与结构有关三、离子晶体的互作用能三、离子晶体的互作用能 204nN qBU rrr j 0jj 为为Madelung const. ,只与
8、结构有关,只与结构有关Madelung const.的求法:中性组合法。的求法:中性组合法。四、分子晶体的互作用能四、分子晶体的互作用能 1264u rrr LennardJones势势 1261262U rNAArr晶体互作用能晶体互作用能A12和和A6只与晶体结构有关。只与晶体结构有关。在常压下,在常压下,He即使当即使当T0时,也不能凝结成晶体,这时,也不能凝结成晶体,这是由于原子零点振动能的影响,是一个量子效应。是由于原子零点振动能的影响,是一个量子效应。 双粒子模型用于离子晶体和分子晶体上是相当成功双粒子模型用于离子晶体和分子晶体上是相当成功的,这是由于在这两类晶体中,电子云的分布基
9、本上是的,这是由于在这两类晶体中,电子云的分布基本上是球对称的,因而可以用球与球之间的相互作用来模拟。球对称的,因而可以用球与球之间的相互作用来模拟。五、共价结合的基本特征:方向性和饱和性五、共价结合的基本特征:方向性和饱和性本章要求:掌握各种晶体结合类型的基本特征;本章要求:掌握各种晶体结合类型的基本特征; 给定晶体相互作用能的形式(一般情况、给定晶体相互作用能的形式(一般情况、 离子晶体或分子晶体),会根据平衡条件、离子晶体或分子晶体),会根据平衡条件、 体积压缩模量的定义以及体积因子求出平体积压缩模量的定义以及体积因子求出平 衡时晶体中最近邻两个粒子间的距离衡时晶体中最近邻两个粒子间的距
10、离r0、 相互作用能相互作用能U0(或结合能(或结合能W)和体积压缩)和体积压缩 模量模量K的表达式。的表达式。六、共价键与离子键之间的混合键六、共价键与离子键之间的混合键 当形成共价键的两个原子不是同种原子时,这种结当形成共价键的两个原子不是同种原子时,这种结合不是纯粹的共价结合,而是含有离子结合的成分。合不是纯粹的共价结合,而是含有离子结合的成分。第三章第三章 晶格振动和晶体的热学性质晶格振动和晶体的热学性质一、晶格振动一、晶格振动要求:会写出一维(简单晶格或复式晶格)晶体链晶格要求:会写出一维(简单晶格或复式晶格)晶体链晶格 振动的动力学方程,格波方程,并导出色散关系。振动的动力学方程,
11、格波方程,并导出色散关系。二、光学波和声学波的物理图象二、光学波和声学波的物理图象光学波的物理图象:原胞内不同原子间基本上作相对振光学波的物理图象:原胞内不同原子间基本上作相对振 动,当动,当q0时,原胞内不同原子完时,原胞内不同原子完 全作反位相振动。全作反位相振动。声学波的物理图象:原胞基本上作为一个整体振动,当声学波的物理图象:原胞基本上作为一个整体振动,当 q0时,原胞内各原子的振动(包时,原胞内各原子的振动(包 括振幅和位相)都完全相同。括振幅和位相)都完全相同。三、布里渊区三、布里渊区12nnn GqGG 布里渊区边界面方程布里渊区边界面方程在在q空间中,空间中, j(q)有如下性
12、质:有如下性质: jjnqqG源于晶格的周期性源于晶格的周期性 jjqq源于时间反演对称性源于时间反演对称性 简约区就是倒易空间中的简约区就是倒易空间中的WignerSeitz原胞,每原胞,每个布里渊区的体积均相等,都等于倒格子原胞的体积。个布里渊区的体积均相等,都等于倒格子原胞的体积。立方晶系的简约区立方晶系的简约区简单立方晶格的简约区:由简单立方晶格的简约区:由6个个100面围成的简单立方体。面围成的简单立方体。面心立方晶格的简约区:由面心立方晶格的简约区:由8个个111面和面和6个个100面围成面围成 的十四面体。的十四面体。体心立方晶格的简约区:由体心立方晶格的简约区:由12个个110
13、面围成的正十二面面围成的正十二面 体。体。要求:给定一简单晶体(二维)结构,会作出其前几个要求:给定一简单晶体(二维)结构,会作出其前几个 布里渊区图形。布里渊区图形。四、周期性边界条件四、周期性边界条件jjNRaR312123123hhhNNNqbbb 3.8Vconstq(三维)(三维)简约区中波矢简约区中波矢q的取值总数的取值总数N晶体的原胞数晶体的原胞数晶格振动格波晶格振动格波 总数总数dsN晶体的自由度数晶体的自由度数其中,其中,d为晶体的维数,为晶体的维数,s为每个原胞中的原子数。为每个原胞中的原子数。声学波:声学波:d 支;支; 光学波:光学波: d (s-1)支。支。 1, 2
14、, 3五、声子概念五、声子概念声子:晶格振动的能量量子声子:晶格振动的能量量子 ,是反映晶体中原子,是反映晶体中原子 集体运动状态的激发单元。声子只是一种准粒子,集体运动状态的激发单元。声子只是一种准粒子, 它不能脱离晶体二单独存在。声子与声子(或声它不能脱离晶体二单独存在。声子与声子(或声 子与其他粒子)的相互作用过程遵从能量守恒和子与其他粒子)的相互作用过程遵从能量守恒和 准动量守恒。准动量守恒。j j第第j种声子的能量本征值为种声子的能量本征值为jjj12En一个典型声子能量:一个典型声子能量:210 eV在一定温度下,第在一定温度下,第j种声子的统计平均能量为种声子的统计平均能量为jj
15、jjjB11122exp1kEnT 声子是一种玻色子,在一定温度下,平均声子数声子是一种玻色子,在一定温度下,平均声子数按能量的分布遵从按能量的分布遵从BoseEinstein分布:分布:jj1exp1Bnk T六、确定晶格振动谱的实验方法六、确定晶格振动谱的实验方法 利用中子或光子受声子的非弹性散射来确定晶格振利用中子或光子受声子的非弹性散射来确定晶格振动谱。动谱。 中子的非弹性散射:是确定晶格振动谱最常见也是最中子的非弹性散射:是确定晶格振动谱最常见也是最 有效的实验方法。有效的实验方法。 可见光的非弹性散射:可见光光子受光学声子的非弹可见光的非弹性散射:可见光光子受光学声子的非弹 性散射
16、称为性散射称为Raman散射;受声学声子的非弹性散射称散射;受声学声子的非弹性散射称 为为Brillouin散射。散射。可见光非弹性散射的局限性:只能可见光非弹性散射的局限性:只能 确定简约区中心附近很小一部分区域的振动谱。确定简约区中心附近很小一部分区域的振动谱。 X光的非弹性散射:光的非弹性散射:缺点:缺点:X光光子的能量太高,很光光子的能量太高,很 难精确测定散射前后难精确测定散射前后X光光子的能量变化。光光子的能量变化。七、晶格热容七、晶格热容 0012mgEd晶体的零点能:晶体的零点能:与温度有关的振动能:与温度有关的振动能: 0exp1mBE Tdk Tg 03mgdN(三维简单晶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理学 复习 ppt 课件
限制150内