塑料成型理论基础解读ppt课件.ppt
《塑料成型理论基础解读ppt课件.ppt》由会员分享,可在线阅读,更多相关《塑料成型理论基础解读ppt课件.ppt(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、四、塑料成型过程中聚合物的化学反应三、塑料成型过程中聚合物的物理变化重点掌握一、聚合物的流变学性质二、聚合物熔体在模内的流动行为什么是流变学?流变学是研究物质变形与流动的科学。聚合物流变学是怎样产生的? 由于聚合物的各种成型方法都必须依靠聚合物自身的变形和流动来实现,所以也就相应产生了聚合物流变学这样一门科学。聚合物流变学的研究对象是什么? 主要研究聚合物材料在外力作用下产生的应力、应变和应变速率等力学现象与自身黏度之间的关系,以及影响这些关系的各种因素。 主要为了应用其成型理论,正确地选择工艺条件,设计合理的塑料成型系统和模具结构。注射成型生产中研究聚合物流变学的目的是什么? 层流(黏性流动
2、或流线流动)特征:流体的质点沿着平行于流道轴线的方向相对运动,与边壁等距离的液层以同一速度向前移动,不存在任何宏观的层间质点运动,所有质点的流线均相互平行。 湍流(紊流)特征:流体的质点除向前运动外,还在主流动的横向上作不规则的任意运动,质点的流线呈紊乱状态。式中 Re雷诺数,为一无量纲的数群; D管道直径; 流体密度; v流体速度; 流体剪切黏度; Rec临界雷诺数,其值与流道的断面形状和流道壁的表面粗糙度等有关,光滑的金属圆管Rec =2 0002 300。 上式讨论:Re与v成正比与成反比,v越小、越大就越不易呈现湍流状态。 牛顿流体:流体以切变方式流动,切应力与剪切速率间呈线性关系。
3、非牛顿流体:流体以切变方式流动,切应力与剪切速率间呈非线性关系。dtdrdxddrdtdxddrdv)()(切应变分析:dxdr两相邻液层相对移动距离,即切应力作用下流体产生的切应变,记为:=dxdr。 上式又可改写为:drdvdtd 式中 ,单位时间内流体所产生的切应变(剪切速率),s1。(2-1)牛顿流体的流变方程: dtddrdv 式中 ,比例常数,牛顿黏度或绝对黏度(简称黏度),Pa.s。越大,黏稠性越大,剪切变形和流动越不容易,需较大的切应力。( 2-2) 注射成型中,大多数聚合物熔体都是非牛顿流体,且近似服从幂律流动规律,即 nndrdvKK)( 式中 K,稠度,与聚合物、温度有关
4、的常数,反映聚合物熔体的黏稠性;n,非牛顿指数,与聚合物和温度有关的常数,反映聚合物熔体偏离牛顿性质的程度。 (2-3)比较牛顿流动规律,上式可改写为流动方程:a(2-4) 流变方程 :1naK(2-5) 式中 a,聚合物熔体的表观黏度(或非牛顿黏度),表征非牛顿流体(服从幂律函数流动规律)在外力作用下抵抗切变形的能力。表观黏度除与流体本身性质、温度有关之外,还受剪切速率影响,即外力大小及作用的时间也能改变流体的黏稠性。 在幂律流动规律中,n和K均可由试验测定。讨论: n=1时,a=K=,即非牛流体转变为牛顿流体。n1时,绝对值1n越大,流体的非牛顿性越强,剪切速率对表观黏度的影响越强。其他条
5、件一定时,K值越大,流体的黏稠性也就越大,切变形和流动困难,需较大的切应力作用。三种类型:n1时,称为膨胀性液体;n=1,但只有切应力达到或超过一定值后才能流动时,称为宾哈液体。 黏性液体(服从幂律流动规律的非牛顿流体)有哪些类型? 注射成型中,除热固性聚合物和少数热塑性聚合物外,大多数聚合物熔体均有近似假塑性液体的流变学性质。属膨胀性和宾哈液体的主要是一些固体含量较高的聚合物悬浮液及带有凝胶结构的聚合物溶液。 假塑性液体的非牛顿指数n1,通常约为025067,但剪切速率较大时,n值可降至020。 液体在低剪切速率( =1-102s1)作用下呈现牛顿性质(零切牛顿黏度区,零切黏度,记作,o)液
6、体在高剪切速率作用下呈现牛顿性质( 106s1,极限黏度区,极限黏度,记作,); 黏性液体非牛顿性的前提条件:剪切速率不能太大,也不能太小,否则,会出现牛顿性质。液体在中等剪切速率作用下呈非牛顿性质。注射成型的剪切速率通常为103105s1,均在此区。 根据 和 作出理论流动曲线和流变曲线,图2-6。什么是假塑性?a1naK 与对数方程相应的直线型流动曲线和流变曲线如图2-7。 对数流动方程: ln=lnk+nln (2-10)对数流变方程:lna=lnK+(n-1) 1n (2-11) 将式(2-10)两边微分,整理后得tanlnlnddn(2-12) 此式可见非牛顿指数实际上等于对数流动曲
7、线的斜率,这从几何方面显示了n值能够反映非牛顿程度的流变学意义。(2) 图2-8、9分别给出了由试验得到的几种聚合物流变曲线(其中图2-9为对数坐标)。 将它们分别与图2-6(b)和图2-7(b)比较,实验曲线与理论曲线的变化趋势基本相似,这说明幂律流动规律对于假塑性液体基本上是适合的。 结论:在中等剪切速率区域,假塑性液体的变形和流动所需的切应力随剪切速率变化,并呈幂律函数规律增大;变形和流动所受到的黏滞阻力,即液体的表观黏度随剪切速率变化,并呈幂律函数规律减小(这种现象称为假塑性液体的“剪切稀化”效应)。 这源于聚合物的大分子结构和它的变形能力。熔体进行假塑性流动时,增大剪切速率,就增大了
8、熔体内的切应力,于是大分子链从其聚合网络结构中解缠、伸长和滑移的运动加剧,链段的位移(高弹变形)相对减小,分子间的静电引力也将逐渐减弱,熔体内自由空间增加,黏稠性减小,整个体系趋于稀化,从而在宏观上呈现出表观黏度减小的力学性质。为什么聚合物熔体会有“剪切稀化”效应? (1)分子结构 聚合物的分子结构对黏度影响比较复杂: a、大分子链柔顺性较大的聚合物,链间的缠结点多,链的解缠、伸长和滑移困难,熔体流动时的非牛顿性强; b、对链的刚硬性和分子间吸引力较大的聚合物,熔体黏度对温度的敏感性增加,非牛顿性减弱,提高成型温度有利于改善流动性能。 聚合物大分子中支链结构对黏度的影响: a、支化程度提高,黏
9、度增大,流动性降低; b、如果聚合物大分子中存在长支链,会增大熔体黏度对于剪切速率的敏感性,当零切黏度o相同时,有长支链的熔体进入非牛顿区域的临界剪切速率比没有支链的熔体低。 c、大分子含有较大的侧基时,会使聚合物内的自由空间增大,从而使得熔体黏度对压力和温度的敏感性提高。(2)相对分子质量 聚合物相对分子质量较大时:a、大分子链解缠、伸长和滑移困难,熔体流动时需要较大的剪切速率和较长的剪切作用时间;b、熔体黏度、黏度对剪切速率的敏感性 (或非牛顿性)都会增大。 实验表明,相对分子质量对熔体非牛顿性的影响: 聚合物熔体在低剪切速率下的零切黏度o与它的重均相对分子质量 具有下述关系,即 wMwM
10、wMo=Co a (2-13)或 lgo =lgCo+alg (2-14)式中 Co与聚合物和温度有关的常数; a与重均相对分子质量有关的常数。 图形分析;聚合物重均相对分子质量有一个临界值 (称为缠结相对分子质量),、 时,大分子链缠结较轻,近似呈现牛顿性质;、 时,大分子链缠结严重,熔体呈非牛顿性质。只要将 与 进行比较,就可以大致确定注射成型生产中所用的聚合物是否具有非牛顿性质。wMwMwMwMwMwMwM 随着相对分子质量的增大,熔体进行非牛顿流动所需的临界剪切速率 c 逐渐减小,即相对分子质量越大,熔体越容易呈现非牛顿性。 应用意义:注射成型工艺要求聚合物熔体必须具有较好的流动性,相
11、对分子质量大的聚合物常因黏度过大出现成型问题,此时可在聚合物中添加一些低分子物质(如增塑剂等),以减小相对分子质量并降低黏度值,促使流动性得到改善。(3)相对分子质量分布 什么是相对分子质量分布? 聚合物内大分子之间相对分子量的差异叫做相对分质子量分布。差异越大分布越宽。 表示方法:聚合物相对分子质量分布的宽窄,常用重均相对分子质量 和数均相对分子质量 的比值 表示,该比值小于5时表示分布较窄,反之则表示分布较宽。wMNMNMwM 实验证明:a、平均相对分子质量相同,相对分子质量分布较宽时,聚合物熔体的黏度较小,非牛顿性较强。b、相对分子质量分布窄的聚合物熔体可以在比较大的低剪切速率范围内表现
12、出牛顿性质,牛顿性区域大;相对分子质量分布宽的熔体则会在同样的剪切速率范围内提前表现出非牛顿性,牛顿性区域小。 应用意义:在注射成型中,聚合物的相对分子质量分布比较宽时,虽然能呈现黏度小、流动性好的特点,但成型出的制品性能比较差。欲提高制品性能,需要尽量减少聚合物中的低分子物质,并尽量使用相对分子质量分布较窄的物料。(4)助剂 为了保证使用性能或加工需要,多数聚合物都要添加一些助剂才能使用。聚合物中添加助剂后,大分子间的相互作用力、熔体黏度都将发生改变。用方程描述温度对聚合物黏度的影响:牛顿熔体 REexp(2-16) 非牛顿熔体 (2-17) REexp式中 牛顿黏度; K稠度系数;o、分别
13、是聚合物在初始状态和终止状态下的热力学温度;o、o分别是聚合物在初始状态下的牛顿黏度和稠度系数; R通用气体常数, R8.32J/(mol.K); E聚合物的黏流活化能。 E与聚合物品种有关,可由试验测定。21REdd21REddK(2-18) (2-19) 上式可看出:E值对聚合物黏度和温度之间的关系有影响,E值较大,其黏度对温度的变化率较大,即黏度对温度变化比较敏感。%100%100oovvVVk(2-20) RV 结论:注射成型中考虑压力对黏度的影响时,关键问题在于如何综合考虑生产的经济性、设备和模具的可靠性及制件的质量等因素,确保成型工艺能有最佳的注射压力和注射温度。为什么要分析聚合物
14、熔体在流道中流动规律?熔体流动过程中压力降和速度分布变化的原因是什么?熔体流动时存在内部黏滞阻力和管道壁的摩擦阻力;导管截面形状和尺寸改变。聚合物熔体在流道中流动时的假设条件:聚合物熔体是牛顿流体或服从幂律流动规律的假塑性流体;流体为等温的稳态层流; 熔体为不可压缩; 流动时流层在管道壁面上无滑移; 管道为无限长。 分析:等截面圆管半径为R。取距离管中心半径为r、长为L的流体圆柱单元。 推动力为压力降(P)与圆柱体横截面积(r2)的乘积,阻力等于切应力()与圆柱体表面积(2rL)的乘积,即p (r2)= (2rL),由此得=rp/2L (2-24)紧靠管壁处的液层有r=R,管壁处切应力为R=R
15、p/2L (2-25)上两式意义:任一液层的切应力()与其到圆管轴线的距离(r)和管长方向上的压力梯度(pL)均成正比; 在管道中心处(r=0)的切应力为零,而在管壁处(r=R)的切应力达到最大值。切应力在圆管径上的分布如图217。 注意:注意:切应力的计算并未指明流体的性质,可见管道内液层的切应力与流体的性质无关。Lpr2 (2-26) 牛顿流体的切应力与剪切速率符合式 所表达的关系,将此式与式=rp/2L联立,可得(2)牛顿流体在等截面圆管中的流动 即牛顿流体的剪切速率与液层的半径成正比,在管中心处为零,在管壁处达到最大值LpRR2(2-27) 将式(226) 和式(2-1) 联立,积分得
16、牛顿流体流动时沿圆管半径方向的速度分布2242rRLprdrLpdvvRrvo(2-28) 即牛顿流体在压力梯度作用下流动时,沿圆管半径方向的速度分布为抛物线形的二次曲线,如图217。drdvLpr2rvdrqRov2(2-29) 流体流过圆管任一截面时的体积流率(qv)为 将式(228) 代人式(2-29)并积分即可得到LpRqv84(2-30)48RLqpv(2-31)式(2-30)就是有名的泊肃叶-哈根方程。224rRLpv 式(2-27) 与式(2-31) 联立,可得到牛顿型流体在管壁处的剪切速率与体积流率的关系34RqvR(2-32)(3)假塑性流体在等截面圆管中的流动 注射成型中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 塑料 成型 理论基础 解读 ppt 课件
限制150内