数学建模PPT课件--稳定性模型.ppt
《数学建模PPT课件--稳定性模型.ppt》由会员分享,可在线阅读,更多相关《数学建模PPT课件--稳定性模型.ppt(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章第六章 稳定性模型稳定性模型6.1 捕鱼业的持续收获捕鱼业的持续收获6.2 军备竞赛军备竞赛6.3 种群的相互竞争种群的相互竞争6.4 种群的相互依存种群的相互依存6.5 种群的弱肉强食种群的弱肉强食稳定性模型稳定性模型 对象仍是动态过程,而建模目的是研究时对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势间充分长以后过程的变化趋势 平衡状平衡状态是否稳定。态是否稳定。 不求解微分方程,而是用微分方程稳定性不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。理论研究平衡状态的稳定性。6.1 捕鱼业的持续收获捕鱼业的持续收获 再生资源(渔业、林业等)与再生资源(渔业、
2、林业等)与非再生资源(矿业等)非再生资源(矿业等) 再生资源应适度开发再生资源应适度开发在持续稳在持续稳产前提下实现最大产量或最佳效益。产前提下实现最大产量或最佳效益。问题问题及及 分析分析 在在捕捞量稳定捕捞量稳定的条件下,如何控的条件下,如何控制捕捞使产量最大或效益最佳。制捕捞使产量最大或效益最佳。 如果使捕捞量等于自然增长量,如果使捕捞量等于自然增长量,渔渔场鱼量将保持不变场鱼量将保持不变,则捕捞量稳定。,则捕捞量稳定。背景背景ExNxrxxFtx)1 ()()( )1()()(Nxrxxftx)()()(xhxfxF记产量模型产量模型假设假设 无捕捞时鱼的自然增长服从无捕捞时鱼的自然增
3、长服从 Logistic规律规律 单位时间捕捞量与渔场鱼量成正比单位时间捕捞量与渔场鱼量成正比建模建模 捕捞情况下捕捞情况下渔场鱼量满足渔场鱼量满足 不需要求解不需要求解x(t), 只需知道只需知道x(t)稳定的条件稳定的条件r固有增长率固有增长率, N最大鱼量最大鱼量h(x)=Ex, E捕捞强度捕捞强度x(t) 渔场鱼量渔场鱼量一阶微分方程的平衡点及其稳定性一阶微分方程的平衡点及其稳定性) 1 ()(xFx 一阶非线性(自治)方程一阶非线性(自治)方程F(x)=0的根的根x0 微分方程的微分方程的平衡点平衡点000 xxxxx设设x(t)是方程的解,若从是方程的解,若从x0 某邻域的任一初值
4、出发,某邻域的任一初值出发,都有都有,)(lim0 xtxt称称x0是方程是方程(1)的的稳定平衡点稳定平衡点不求不求x(t), 判断判断x0稳定性的方法稳定性的方法直接法直接法)2()(00 xxxFx(1)的近似线性方程的近似线性方程)1 (),2(0)(00对稳定xxF)1 (),2(0)(00对不稳定xxF0)(xF0),1 (10 xrENxErxFrExF)(,)(10产量模型产量模型ExNxrxxFtx)1 ()()( 平衡点平衡点稳定性判断稳定性判断0)(, 0)(10 xFxFrE0)(, 0)(10 xFxFrEx0 稳定稳定, 可得到稳定产量可得到稳定产量x1 稳定稳定,
5、 渔场干枯渔场干枯E捕捞强度捕捞强度r固有增长率固有增长率不稳定稳定10,xx稳定不稳定10,xx产量模型产量模型在捕捞量稳定的条件下,在捕捞量稳定的条件下,控制捕捞强度使产量最大控制捕捞强度使产量最大图解法图解法)()()(xhxfxF)1 ()(NxrxxfExxh)(0)(xFP的横坐标的横坐标 x0平衡点平衡点2/*0*rxhEmy=rxhPx0y0y=h(x)=ExxNy=f(x)P的纵坐标的纵坐标 h产量产量)4/, 2/(*0*rNhNxPm产量最大产量最大f 与与h交点交点P稳定0 xrEhmx0*=N/2P*y=E*x控制渔场鱼量为最大鱼量的一半控制渔场鱼量为最大鱼量的一半c
6、ErEpNEESETER)1 ()()()()1 (4222NpcrNhRcEpExSTR效益模型效益模型假设假设 鱼销售价格鱼销售价格p 单位捕捞强度费用单位捕捞强度费用c 单位时间利润单位时间利润在捕捞量稳定的条件下,控制捕捞在捕捞量稳定的条件下,控制捕捞强度使效益最大强度使效益最大.)/1 (0rENx稳定平衡点稳定平衡点求求E使使R(E)最大最大)1(2pNcrERpcN22)1 (rENxRR渔场渔场鱼量鱼量2*rE收入收入 T = ph(x) = pEx支出支出 S = cEEsS(E)T(E)0rE捕捞捕捞过度过度 封闭式捕捞封闭式捕捞追求利润追求利润R(E)最大最大 开放式捕捞
7、开放式捕捞只求利润只求利润R(E) 0cErEpNEESETER)1 ()()()(R(E)=0时的捕捞强度时的捕捞强度(临界强度临界强度) Es=2ER)1 (rENxsspc临界强度下的渔场鱼量临界强度下的渔场鱼量 cp,捕捞过度捕捞过度ER)1(2pNcrERE*令令=0)1 (pNcrEsssxE,6.2 军备竞赛军备竞赛 描述双方描述双方(国家或国家集团国家或国家集团)军备竞赛过程军备竞赛过程 解释解释(预测预测)双方军备竞赛的结局双方军备竞赛的结局假设假设 1)由于相互不信任,一方军备越大,另一)由于相互不信任,一方军备越大,另一方军备增加越快;方军备增加越快; 2)由于经济实力限
8、制,一方军备越大,对)由于经济实力限制,一方军备越大,对自己军备增长的制约越大;自己军备增长的制约越大; 3)由于相互敌视或领土争端,每一方都存)由于相互敌视或领土争端,每一方都存在增加军备的潜力。在增加军备的潜力。进一步进一步假设假设 1)2)的作用为线性;)的作用为线性;3)的作用为常数)的作用为常数目的目的gkyxtx)( 建模建模军备竞赛的结局军备竞赛的结局微分方程的平衡点及其稳定性微分方程的平衡点及其稳定性x(t)甲方军备数量,甲方军备数量, y(t)乙方军备数量乙方军备数量hylxty)( , 本方经济实力的制约;本方经济实力的制约; k, l 对方对方军备数量的刺激;军备数量的刺
9、激;g, h 本方本方军备竞赛的潜力。军备竞赛的潜力。t 时的时的x(t),y(t)线性常系数线性常系数微分方程组微分方程组dycxtybyaxtx)()(的平衡点及其稳定性的平衡点及其稳定性平衡点平衡点P0(x0,y0)=(0,0) 代数方程代数方程00dycxbyax的根的根若从若从P0某邻域的任一初值出发,都有某邻域的任一初值出发,都有,)(lim0 xtxt称称P0是微分方程的是微分方程的稳定平衡点稳定平衡点,)(lim0ytyt记系数矩阵记系数矩阵dcbaA特征方程特征方程0)det( IAAqdapqpdet)(02特征根特征根2/ )4(22, 1qpp线性常系数线性常系数微分方
10、程组微分方程组dycxtybyaxtx)()(的平衡点及其稳定性的平衡点及其稳定性特征根特征根2/ )4(22, 1qpp平衡点平衡点 P0(0,0)微分方程一般解形式微分方程一般解形式ttecec2121平衡点平衡点 P0(0,0)稳定稳定平衡点平衡点 P0(0,0)不稳定不稳定 1,2为负数或有负实部为负数或有负实部p 0 且且 q 0p 0 或或 q kl 下下 x(t), y(t)0, 即友好邻国通过裁军可达到永久和平。即友好邻国通过裁军可达到永久和平。hylxtygkyxtx)()(模型模型 , 本方经济实力的制约;本方经济实力的制约; k, l 对方对方军备数量的刺激;军备数量的刺
11、激;g, h 本方本方军备竞赛的潜力。军备竞赛的潜力。3)若)若 g,h 不为零,即便双方一时和解,使某时不为零,即便双方一时和解,使某时x(t), y(t)很小,但因很小,但因 ,也会重整军备。,也会重整军备。0, 0yx4)即使某时一方)即使某时一方(由于战败或协议由于战败或协议)军备大减军备大减, 如如 x(t)=0, 也会因也会因 使该方重整军备,使该方重整军备,gkyx 即存在互不信任即存在互不信任( ) 或固有争端或固有争端( ) 的单方面的单方面裁军不会持久。裁军不会持久。0k0g模型的定性解释模型的定性解释 , 本方经济实力的制约;本方经济实力的制约; k, l 对方对方军备数
12、量的刺激;军备数量的刺激;g, h 本方本方军备竞赛的潜力。军备竞赛的潜力。hylxtygkyxtx)()(模型模型6.3 种群的相互竞争种群的相互竞争 一个自然环境中有两个种群生存,它们之间一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。的关系:相互竞争;相互依存;弱肉强食。 当两个种群为争夺同一食物来源和生存空间当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。竞争力强的达到环境容许的最大容量。 建立数学模型描述两个种群相互竞争的过程,建立数学模型描述两个种
13、群相互竞争的过程,分析产生这种结局的条件。分析产生这种结局的条件。221122221)(NxNxxrtx)1 ()(11111Nxxrtx111111)(Nxxrtx 模型假设模型假设 有甲乙两个种群,它们独自生存有甲乙两个种群,它们独自生存时数量变化均服从时数量变化均服从Logistic规律规律;)1 ()(22222Nxxrtx 两种群在一起生存时,乙对甲增长的阻滞作两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比用与乙的数量成正比; 甲对乙有同样的作用。甲对乙有同样的作用。对于消耗甲的资源而对于消耗甲的资源而言,乙言,乙(相对于相对于N2)是甲是甲(相对于相对于N1) 的的 1
14、倍。倍。11对甲增长的阻滞对甲增长的阻滞作用,乙大于甲作用,乙大于甲乙的竞争力强乙的竞争力强模型模型221Nx模型模型分析分析221111111)(NxNxxrtx221122221)(NxNxxrtx的趋向时)(),(21txtxt(平衡点及其稳定性平衡点及其稳定性)(二阶二阶)非线性非线性(自治自治)方程方程),()(),()(212211xxgtxxxftx的平衡点及其稳定性的平衡点及其稳定性平衡点平衡点P0(x10, x20) 代数方程代数方程0),(0),(2121xxgxxf的根的根若从若从P0某邻域的任一初值出发,都有某邻域的任一初值出发,都有,)(lim011xtxt称称P0是
15、微分方程的是微分方程的稳定平衡点稳定平衡点,)(lim022xtxt模型模型判断判断P0 (x10,x20) 稳定稳定性的方法性的方法直接法直接法(1)的近似线性方程的近似线性方程) 1 (),()(),()(212211xxgtxxxftx)2()(,()(,()()(,()(,()(0220201011020120220201011020112121xxxxgxxxxgtxxxxxfxxxxftxxxxx02121PxxxxggffAAqgfpqpPxxdet)(00212平衡点平衡点 P0稳定稳定(对对2,1)p 0 且且 q 0平衡点平衡点 P0不稳定不稳定(对对2,1)p 0 或或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 PPT 课件 稳定性 模型
限制150内