平面向量数量积的坐标表示模夹角ppt课件.ppt
《平面向量数量积的坐标表示模夹角ppt课件.ppt》由会员分享,可在线阅读,更多相关《平面向量数量积的坐标表示模夹角ppt课件.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。复习引入.cos;0)2(cos)1(2babababaaaaaaababa;或我们学过两向量的和与差可以转化为它们相应我们学过两向量的和与差可以转化为它们相应的坐标来运算的坐标来运算, ,那么怎样用那么怎样用呢?的坐标表示和baba有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价
2、值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 在直角坐标系中,已知两个非零向量在直角坐标系中,已知两个非零向量a = (x1,y1),), b = (x2,y2),), 如何用如何用a 与与b的坐标表示的坐标表示a b Y A(x1,y1)aB(x2,y2)b Oija = x1 i + y1 j ,b = x2 i + y2 j X _ _ _ _ ii jj jiij单位向量单位向量i 、j 分别与分别与x 轴轴、y 轴方向相同,求轴方向相同,求1100 jyixjyixba22112211221221jyyjiyxjiyxixx2121yyxx两个向量的数量积等于它们对应
3、坐标的乘积的两个向量的数量积等于它们对应坐标的乘积的和和.1212a bx xy y 在坐标平面在坐标平面xoy内,已知内,已知 (x1,y1), (x2,y2),则,则ab求求 例例 1:已知已知 (1,3 ), ( 2,23 ),abba解: 1(2)3234;ab1、平面向量数量积的坐标表示、平面向量数量积的坐标表示练习:练习: 则则 ),4 , 3(),1, 3(),2 , 1 (cba_)(cba( 13, 26)有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。;或aaaaaa2)1(221
4、221221122222),(),2,),() 1 (yyxxAByxByxAyxayxayxa(则、(设)两点间的距离公式(;或则设向量的模2、向量的模和两点间的距离公式有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。用于计算向量的模用于计算向量的模22,ax yaxy(1).设则 .,2212212211yyxxayxyxa那么点的坐标分别为的有向线段的起点和终如果表示向量即平面内两点间的距离公式即平面内两点间的距离公式求求| |,| | 例例 1:已知已知 (1,3 ), ( 2,23 ),ab
5、ab 12(3 )22,a ( 2)2(23 )2 4,b(3,3)ab|ab22|3(3)122 3ab 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。3、两向量夹角公式的坐标运算、两向量夹角公式的坐标运算bababacos1800则),(的夹角为与设0.0.cos)180(0),(),222221212222212121212211yxyxyxyxyyxxbayxbyxa,其中则,夹角为与且(设有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文
6、化氛围,依赖既开放又相互信任的合作环境。向量夹角公式的坐标式:向量夹角公式的坐标式:121222221122cosx xy yxyxy 例例 1:已知已知a(1,3 ),b( 2,23 ),求a与b的夹角.cos ,424aba b12 60(x1,y1), (x2,y2),则,则ab有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。0baba垂直垂直0),(),21212211yyxxbayxbyxa则(设4、两向量垂直的坐标表示有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向
7、,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。0a bab 例 2:已知a(5, 0),b(3.2, 2.4), 求证:(ab)b .证明:(ab)babb2 5(3.2)02.4(3.2)22.42 0 (ab)b12120 x xy y 与与 垂直:垂直:ab(x1,y1), (x2,y2),则,则ab练习:练习: 且且 起点坐标为起点坐标为( 1, 2) 终点坐标为终点坐标为( x, 3x), 则则 ,),4 , 3(abab_b4 115 5(,)有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既
8、开放又相互信任的合作环境。 例例3:已知已知A(1、2),),B(2,3),),C( 2,5),), 求证求证ABC是直角三角形是直角三角形证明证明: :AB = (2 1,3 2)= (1,1) AC = (2 1,5 2)= (3,3)AB AC = 1(3)+ 1 3 = 0ABACABC是直角三角形 注:两个向量的注:两个向量的数量积是否为零数量积是否为零是判断相应的两条直线是判断相应的两条直线是否垂直是否垂直的重要方法之一的重要方法之一。 ABCO如证明四边形是矩形,三角形的高,菱形对角线垂直等如证明四边形是矩形,三角形的高,菱形对角线垂直等.XY有利于学习和创新的组织管理机制,创造
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 数量 坐标 表示 夹角 ppt 课件
限制150内