《计量经济学43多重共线性ppt课件.ppt》由会员分享,可在线阅读,更多相关《计量经济学43多重共线性ppt课件.ppt(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物4.3 多重共线性多重共线性Multi-CollinearityMulti-Collinearity我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 一、多重共线性的概念一、多重共线性的概念 二、实际经济问题中的多重共线性二、实际经济问题中的多重共线性 三、多重共线性的后果三、多重共线性的后果 四、多重共线性的检验四、多重共线性的检验 五、克服多重共线性的方法五、克服多重共
2、线性的方法 六、案例六、案例 *七、分部回归与多重共线性七、分部回归与多重共线性 4.3 多重共线性多重共线性我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 一、多重共线性的概念一、多重共线性的概念 对于模型 Yi=0+1X1i+2X2i+kXki+i i=1,2,n其基本假设之一是解释变量是互相独立的。 如果某两个或多个解释变量之间出现了相如果某两个或多个解释变量之间出现了相关性,则称为关性,则称为多重共线性多重共线性(Multicollinearity)。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么
3、把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 如果存在 c1X1i+c2X2i+ckXki=0 i=1,2,n 其中: ci不全为0,则称为解释变量间存在则称为解释变量间存在完全共线完全共线性性(perfect multicollinearity)。 如果存在 c1X1i+c2X2i+ckXki+vi=0 i=1,2,n 其中ci不全为0,vi为随机误差项,则称为 近似共线近似共线性性(approximate multicollinearity)或交互相关交互相关(intercorrelated)。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它
4、放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 在矩阵表示的线性回归模型 Y=X + 中,完全共线性完全共线性指:指:秩秩(X)k+1,即knnnkkXXXXXXXXXX212221212111111中,至少有一列向量可由其他列向量(不包括第一列)线性表出。 如:X2= X1,则X2对Y的作用可由X1代替。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 注意:注意: 完全共线性的情况并不多见,一般出现完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似
5、共线的是在一定程度上的共线性,即近似共线性。性。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 二、实际经济问题中的多重共线性二、实际经济问题中的多重共线性 一般地,产生多重共线性的主要原因有以下三个方面: (1 1)经济变量相关的共同趋势)经济变量相关的共同趋势 时间序列样本:经济繁荣时期,各基本经济变量(收入、消费、投资、价格)都趋于增长;衰退时期,又同时趋于下降。 横截面数据:生产函数中,资本投入与劳动力投入往往出现高度相关情况,大企业二者都大,小企业都小。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为
6、什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 (2 2)滞后变量的引入)滞后变量的引入 在经济计量模型中,往往需要引入滞后经济变量来反映真实的经济关系。 例如,消费=f(当期收入, 前期收入) 显然,两期收入间有较强的线性相关性。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 (3)样本资料的限制样本资料的限制 由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。 一般经验一般经验: 时间序列数据时间序列数据样本:简单线性模
7、型,往往存在多重共线性。 截面数据截面数据样本:问题不那么严重,但多重共线性仍然是存在的。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 二、多重共线性的后果二、多重共线性的后果 1 1、完全共线性下参数估计量不存在、完全共线性下参数估计量不存在如果存在如果存在完全共线性完全共线性,则,则(XX)-1不存在,无法得不存在,无法得到参数的估计量。到参数的估计量。XY的OLS估计量为:YXXX1)(我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有
8、错:表里边有一个活的生物例:例:对离差形式的二元回归模型2211xxy如果两个解释变量完全相关,如x2= x1,则121)(xy这时,只能确定综合参数1+2的估计值:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 2 2、近似共线性下、近似共线性下OLS估计量非有效估计量非有效 近似共线性下,可以得到OLS参数估计量, 但参数估计量方差方差的表达式为 由于|XX|0,引起(XX) -1主对角线元素较大,使参数估计值的方差增大,OLS参数估计量非有参数估计量非有效。效。12)()(XXCov我吓了一跳,蝎子
9、是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物仍以二元线性模型 y=1x1+2x2+ 为例: 2221221212221222122211121)(1/)()()var(iiiiiiiiiixxxxxxxxxxXX221211rxi2221221)(iiiixxxx恰为X1与X2的线性相关系数的平方r2由于 r2 1,故 1/(1- r2 )1我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物多重共线性使参数估计值的方差增大重共线性使参
10、数估计值的方差增大,1/(1-r2)为方差膨胀因子方差膨胀因子(Variance Inflation Factor, VIF)当完全不共线完全不共线时, r2 =0 2121/)var(ix当近似共线近似共线时, 0 r2 15.19,故认上述粮食生产的总体线性关系显著成立。 但X4 、X5 的参数未通过t检验,且符号不正确,故解释变量间可能存在多重共线性解释变量间可能存在多重共线性。54321028. 0098. 0166. 0421. 0213. 644.12816XXXXXY (-0.91) (8.39) (3.32) (-2.81) (-1.45) (-0.14)我吓了一跳,蝎子是多么
11、丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 2 2、检验简单相关系数、检验简单相关系数 发现:发现: X1与X4间存在高度相关性。列出X1,X2,X3,X4,X5的相关系数矩阵:X1X2X3X4X5X11.000.010.640.960.55X20.011.00-0.45-0.040.18X30.64-0.451.000.690.36X40.96-0.040.691.000.45X50.550.180.360.451.00我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我
12、的猜测没有错:表里边有一个活的生物 3 3、找出最简单的回归形式、找出最简单的回归形式 可见,应选可见,应选第第1 1个式子个式子为初始的回归模型。为初始的回归模型。分别作Y与X1,X2,X4,X5间的回归:1576. 464.30867XY (25.58) (11.49) R2=0.8919 F=132.1 DW=1.562699. 018.33821XY (-0.49) (1.14) R2=0.075 F=1.30 DW=0.124380. 00 .31919XY (17.45) (6.68) R2=0.7527 F=48.7 DW=1.115240. 219.28259XY (-1.04
13、) (2.66)R2=0.3064 F=7.07 DW=0.36我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 4 4、逐步回归、逐步回归 将其他解释变量分别导入上述初始回归模型,寻找最佳回归方程。CX1X2X3X4X52RDWY=f(X1)308684.230.88521.56 t 值25.5811.49Y=f(X1,X2)-438714.650.670.95582.01t 值-3.0218.475.16Y=f(X1,X2,X3)-119785.260.41-0.190.97521.53t 值0.851
14、9.63.35-3.57Y=f(X1,X2,X3,X4)-130566.170.42-0.17-0.090.97751.80t 值-0.979.613.57-3.09-1.55Y=f(X1,X3,X4,X5)-126905.220.40-0.200.070.97981.55t 值-0.8717.853.02-3.470.37我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 回归方程以回归方程以Y=f(Y=f(X1,X2,X3) )为最优:为最优: 5 5、结论、结论32119. 041. 026. 5119
15、78XXXY我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物*七、分部回归与多重共线性七、分部回归与多重共线性我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物1 1、分部回归法、分部回归法(Partitioned Regression)(Partitioned Regression)对于模型YX2211XXY在满足解释变量与随机误差项不相关的情况下,可以写出关于参数估计量的方程组: 212212211121xxxxxxx
16、xYXYX将解释变量分为两部分,对应的参数也分为两部分:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物如果存在)()()()(22111122111111111XYXXXXXXXYXXX0XX21则有YXXX11111)(同样有YXXX21222)(这就是仅以这就是仅以X X2 2作为解释变量时的参数估计量作为解释变量时的参数估计量。这就是仅以这就是仅以X X1 1作为解释变量时的参数估计量作为解释变量时的参数估计量我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到
17、愉快,证实我的猜测没有错:表里边有一个活的生物2 2、由分部回归法导出、由分部回归法导出 如果一个多元线性模型的解释变量之间完全正交,如果一个多元线性模型的解释变量之间完全正交,可以将该多元模型分为多个一元模型、二元模可以将该多元模型分为多个一元模型、二元模型、型、进行估计,参数估计结果不变;进行估计,参数估计结果不变; 实际模型由于存在或轻或重的共线性,如果将它实际模型由于存在或轻或重的共线性,如果将它们分为多个一元模型、二元模型、们分为多个一元模型、二元模型、进行估计,进行估计,参数估计结果将发生变化;参数估计结果将发生变化;我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 严格地说,实际模型由于总存在一定程严格地说,实际模型由于总存在一定程度的共线性,所以每个参数估计量并不度的共线性,所以每个参数估计量并不 真正反映对应变量与被解释变量之间的真正反映对应变量与被解释变量之间的结构关系。结构关系。 当模型存在共线性,将某个共线性变量去当模型存在共线性,将某个共线性变量去掉,剩余变量的参数估计结果将发生变化,掉,剩余变量的参数估计结果将发生变化,而且经济含义有发生变化;而且经济含义有发生变化;
限制150内