隐函数的求导公式ppt课件.ppt
《隐函数的求导公式ppt课件.ppt》由会员分享,可在线阅读,更多相关《隐函数的求导公式ppt课件.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第五节第五节 隐函数的求导公式隐函数的求导公式一一.一个方程的情形一个方程的情形二二.方程组的情形方程组的情形三三.小结小结0),(. 1 yxF一、一个方程的情形一、一个方程的情形隐函数存在定理隐函数存在定理 1 1 设函数设函数),(yxF在点在点),(00yxP的的某一邻域内具有连续的偏导数,且某一邻域内具有连续的偏导数,且0),(00 yxF,0),(00 yxFy,则方程,则方程0),( yxF在点在点),(00yxP的的某一邻域内恒能唯一确定一个单
2、值连续且具有连续某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数导数的函数)(xfy ,它满足条件,它满足条件)(00 xfy ,并,并有有 yxFFdxdy . .隐函数的求导公式隐函数的求导公式例例 验验证证方方程程0122 yx在在点点)1 , 0(的的某某邻邻域域内内能能唯唯一一确确定定一一个个单单值值可可导导、且且0 x时时1 y的的隐隐函函数数)(xfy ,并并求求这这函函数数的的一一阶阶和和二二阶阶导导 数数在在0 x的的值值. 解解令令1),(22 yxyxF则则,2xFx ,2yFy , 0)1 , 0( F, 02)1 , 0( yF依依定定理理知知方方程程0122
3、yx在在点点)1 , 0(的的某某邻邻域域内内能能唯唯一一确确定定一一个个单单值值可可导导、且且0 x时时1 y的的函函数数)(xfy 函函数数的的一一阶阶和和二二阶阶导导数数为为yxFFdxdy ,yx , 00 xdxdy222yyxydxyd 2yyxxy ,13y . 1022 xdxyd例例 2 2 已已知知xyyxarctanln22 ,求求dxdy.解解令令则则,arctanln),(22xyyxyxF ,),(22yxyxyxFx ,),(22yxxyyxFy yxFFdxdy .xyyx 隐函数存在定理隐函数存在定理2 2 设函数设函数),(zyxF在点在点,(0 xP),0
4、0zy的某一邻域内有连续的偏导数,且的某一邻域内有连续的偏导数,且,(0 xF0),00 zy,0),(000 zyxFz,则方程,则方程,(yxF0) z在点在点),(000zyxP的某一邻域内恒能唯一确的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数定一个单值连续且具有连续偏导数的函数),(yxfz ,它满足条件,它满足条件),(000yxfz ,并有并有 zxFFxz , zyFFyz . .0),(. 2 zyxF例例 3 3 设设04222 zzyx,求求22xz .解解令令则则,4),(222zzyxzyxF ,2xFx , 42 zFz,2zxFFxzzx 22xz 2
5、)2()2(zxzxz 2)2(2)2(zzxxz .)2()2(322zxz 例例 4 4 设设),(xyzzyxfz ,求求xz ,yx ,zy .思路:思路:把把z看看成成yx,的的函函数数对对x求求偏偏导导数数得得xz ,把把x看成看成yz,的函数对的函数对y求偏导数得求偏导数得yx ,把把y看成看成zx,的函数对的函数对z求偏导数得求偏导数得zy .解解令令, zyxu ,xyzv 则则),(vufz 把把z看成看成yx,的函数对的函数对x求偏导数得求偏导数得xz )1(xzfu ),(xzxyyzfv 整理得整理得xz ,1vuvuxyffyzff 把把x看看成成yz,的的函函数数
6、对对y求求偏偏导导数数得得)1(0 yxfu),(yxyzxzfv 整理得整理得,vuvuyzffxzff yx 把把y看成看成zx,的函数对的函数对z求偏导数得求偏导数得)1(1 zyfu),(zyxzxyfv 整理得整理得zy .1vuvuxzffxyff 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例5 5:设设求求证证( -,-)0,1.zzx az y bzabxy 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一
7、个活的生物隐函数存在定理设三元函数是区域隐函数存在定理设三元函数是区域内的类函数,点且满足内的类函数,点且满足则方程组在点的某邻域内唯一确则方程组在点的某邻域内唯一确000000(1)000000000(,)(,)0003:( , , ),( , , )(,):(,)0,(,)0,(,)0( , )( , , )0(,)( , , )0yzxyzyzxyzF x y z G x y zCxyzF xyzG xyzFFF GJy zGGF x y zxyzG x y z 二、方程组的情形二、方程组的情形1我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 求导 公式 ppt 课件
限制150内