蒙特卡洛模拟方法ppt课件.ppt
《蒙特卡洛模拟方法ppt课件.ppt》由会员分享,可在线阅读,更多相关《蒙特卡洛模拟方法ppt课件.ppt(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、蒙特卡罗模拟方法蒙特卡罗模拟方法 报 告 人 :杨林 吴颖 科 目 :项目风险管理 任课教师 :尹志军我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物蒙特卡罗模拟方法蒙特卡罗模拟方法 一、蒙特卡罗方法概述 二、蒙特卡罗方法模型 三、蒙特卡罗方法的优缺点及其适用范围 四、相关案例分析及软件操作 五、问题及相关答案我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物Monte Carlo方法的发展历史 早在17世纪,人们就知道用
2、事件发生的“频率”来决定事件的“概率”。从方法特征的角度来说可以一直追溯到18世纪后半叶的蒲丰(Buffon)随机投针试验,即著名的蒲丰问题。1707-1788我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 1777年,古稀之年的蒲丰在家中请来好些客人玩投针游戏(针长是线距之半),他事先没有给客人讲与有关的事。客人们虽然不知道主人的用意,但是都参加了游戏。他们共投针2212次,其中704次相交。蒲丰说,2212/704=3.142,这就是值。这着实让人们惊喜不已。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为
3、什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例蒲丰氏问题 设针投到地面上的位置可以用一组参数(x,)来描述,x为针中心的坐标,为针与平行线的夹角,如图所示。 任意投针,就是意味着x与都是任意取的,但x的范围限于0,a,夹角的范围限于0,。在此情况下,针与平行线相交的数学条件是针在平行线间的位置 sin lx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物其他当, 0sin, 1),(lxxsNiiiNxsNs1),(1aladxddxdfxfxsPl2)()
4、(),(sin0021NsalaPl22我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 一些人进行了实验,其结果列于下表 :实验者年份投计次数的实验值沃尔弗(Wolf)185050003.1596斯密思(Smith)185532043.1553福克斯(Fox)189411203.1419拉查里尼(Lazzarini)190134083.1415929我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 20世纪四十年代,由
5、于电子计算机的出现,利用电子计算机可以实现大量的随机抽样的试验,使得用随机试验方法解决实际问题才有了可能。 其中作为当时的代表性工作便是在第二次世界大战期间,为解决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数学家冯.诺伊曼(Von Neumann)和乌拉姆(Ulam)等提出蒙特卡罗模拟方法。 由于当时工作是保密的,就给这种方法起了一个代号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而很快就得到人们的普遍接受。 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错
6、:表里边有一个活的生物蒙特卡罗方法的基本思想 蒙特卡罗方法又称计算机随机模拟方法。它是以概率统计理论为基础的一种方法。 由蒲丰试验可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某
7、种分布密度函数f(r)的随机变量(r)的数学期望 通过某种试验,得到个观察值r1,r2,rN(用概率语言来说,从分布密度函数f(r)中抽取个子样r1,r2,rN,),将相应的个随机变量的值g(r1),g(r2),g(rN)的算术平均值 作为积分的估计值(近似值)。 NiiNrgNg1)(10)()(drrfrgg我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物计算机模拟试验过程 计算机模拟试验过程,就是将试验过程(如投针问题)化为数学问题,在计算机上实现。 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它
8、放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物模拟程序l=1;d=2;m=0;n=10000for k=1:n;x=unifrnd(0,d/2);y=unifrnd(0,pi);if x0.5*1*sin(y)m=m+1elseendendp=m/npi_m=1/p我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物建立概率统计模型收集模型中风险变量的数据 , 确定风险因数的分布函数根据风险分析的精度要求,确定模拟次数 样本值统计分析,估计均值,标准差NNN根据随机数在各
9、风险变量的概率分布中随机抽样,代入第一步中建立的数学模型NN个建立对随机变量的抽样方法,产生随机数。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例子某投资项目每年所得盈利额A由投资额P、劳动生产率L、和原料及能源价格Q三个因素。收集P,L,Q数据,确定分布函数模拟次数N;根据分布函数,产生随机数抽取P,L,Q一组随机数,带入模型产生 A值统计分析,估计均值,标准差根据历史数据,预测未来。122AaPbLcQd122AaPbLcQd( ),( ),( )f Pf Lf QNNNN个我吓了一跳,蝎子是多么丑
10、恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物模型建立的两点说明 Monte Carlo方法在求解一个问题是,总是需要根据问题的要求构造一个用于求解的概率统计模型,常见的模型把问题的解化为一个随机变量 的某个参数 的估计问题。 要估计的参数 通常设定为 的数学期望(亦平均值,即 )。按统计学惯例, 可用 的样本 的平均值来估计,即XXX()E XX1,2,(.)nX XX11nkkXXn我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 这时就
11、必须采用主观概率,即由专家做出主观估计得到的概率。 另一方面,在对估测目标的资料与数据不足的情况下,不可能得知风险变量的真实分布时,根据当时或以前所收集到的类似信息和历史资料,通过专家分析或利用德尔菲法还是能够比较准确地估计上述各风险因素并用各种概率分布进行描述的。 Crystal ball软件对各种概率分布进行拟合以选取最合适的分布。收集模型中风险变量的数据 , 确定风险因数的分布函数我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物抽样次数与结果精度解的均值与方差的计算公式:2x 是随机变量X的方差,而称
12、 为估计量方差。通常蒙特卡罗模拟中的样本量n很大,由统计学的中心极限定理知 渐进正态分布,即:()Var X2121lim()2xtxxXpxedtnxXn21(),()xE XVar Xn从而()1xXpn 式中位小概率,1- 称为置信度: 是标准正态分布中与对应的临界值,可有统计分布表查得。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物()1xXpn /xn 由得统计学上称为与置信水平对应的置信区间:/xxXnXn 我们就把 记做是误差得到人们习惯的结果误差表示:X对于指定的误差,模拟所需抽样次数n可
13、由 导出:/xn 2xn 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物随机数 随机数的定义 用Monte Carlo方法模拟某过程时,需要产生各种概率分布的随机变量。最简单、最基本、最重要的随机变量是在0,1上均匀分布的随机变量。由该分布抽取的简单子样称为随机数序列,其中每一个体称为随机数。随机数属于一种特殊的由已知分布的随机抽样问题。随机数是随机抽样的基本工具。 0,1上均匀分布(单位均匀分布),其分布密度函数为: 分布函数为: 特征:独立性独立性、均匀性均匀性1,01( )0,xf x其他0,0(
14、),011,1xF xxxx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物随机数的产生方法 随机数表 物理方法 计算机方法我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物随机数表 随机数表是由0,1,2,9十个数字组成,每个数字以0.1的概率出现,数字之间相互独立。 方法:如果要得到n位有效数字的随机数,只需将表中每n个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。 例如:某随机数表第一行数字为763425
15、8910,要想得到三位有效数字的随机数依次为:0.763,0.425,0.891我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物物理方法 基本原理:利用某些物理现象,在计算机上增加些特殊设备,可以在计算机上直接产生随机数。 缺点:无法重复实现 费用昂贵我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物计算机方法 在计算机上产生随机数最实用、最常见的方法是数学方法,即用如下递推公式: 产生随机数序列,对于给定的初始值 ,确定
16、 ,n=1,2 存在的问题:1,不满足相互独立的要求 2,不可避免的出现重复问题 所以成为伪随机数 问题的解决:1.选取好的递推公式 2.不是本质问题1()nnTn1n我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物产生伪随机数的乘同余方法乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于任一初始值x1,伪随机数序列由下面递推公式确定: 1. (mod)iixa xM12,1,2,ixiMiXa 为乘子, 为种子(初值);M成为模数。上式表示 是 被M 整除后的余数,叫做 与 对模 M的同
17、余。1ix.ia x.ia x1x利用乘同余法产生伪随机数的步骤如下: (1)取种子 、乘子 、和模数M;(2)由式(1)获得一系列 , .;(3)由式(2)得到一系列 , 。这就是所要产生的伪随机数的序列1xa2x121x我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物乘同余方法在计算机上的使用 为了便于在计算机上使用,通常取 :=2s 其中s为计算机中二进制数的最大可能有效位数x1= 奇数 a = 52k+1 其中k为使52k+1在计算机上所能容纳的最大整数,即a为计算机上所能容纳的5的最大奇次幂。一般
18、地,s=32时,a=513;s=48,a=515等。伪随机数序列的最大容量(M)=2s-2 。 乘同余方法是使用的最多、最广的方法,在计算机上被广泛地使用。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物用MATLAB产生随机数 语言:连续均匀分布的函数表达式为 R=unifrnd(A,B) 演示:for n=1:100; k=unifrnd(0,1) end我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物随机抽样及其特
19、点随机抽样及其特点 由巳知分布的随机抽样指的是由己知分布的总体中抽取简单子样。随机数序列随机数序列是由单位均匀分布的总体中抽取的简单子样,属于一种特殊的由已知分布的随机抽样问题。下表所叙述的由任意已知分布中抽取简单子样,是在假设随机数为已知量的前提下,使用严格的数学方法产生的。 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物直接抽样方法直接抽样方法 对于任意给定的分布函数F(x),直接抽样方法如下: 其中,1,2,N为随机数序列。为方便起见,将上式简化为: 若不加特殊说明,今后将总用这种类似的简化形式表示
20、,总表示随机数。NntXntFn, 2 , 1,inf)(tXtFF)(inf我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物离散型分布的直接抽样方法离散型分布的直接抽样方法 对于任意离散型分布: 其中x1,x2,为离散型分布函数的跳跃点,P1,P2,为相应的概率,根据前述直接抽样法,有离散型分布的直接抽样方法如下: 该结果表明,为了实现由任意离散型分布的随机抽样,直接抽样方法是非常理想的。 xxiiPxF)(I1ii1I1iiPP,当IFxX我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美
21、丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例1. 二项分布的抽样二项分布的抽样 二项分布为离散型分布,其概率函数为: 其中,P为概率。对该分布的直接抽样方法如下: nNnnNnPPCPnxP)1 ()(n0ii1n0iiPP,当nXF我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例2. 掷骰子点数的抽样掷骰子点数的抽样 掷骰子点数X=n的概率为: 选取随机数,如 则 在等概率的情况下,可使用如下更简单的方法: 其中表示取整数。61)( nXP661nnnXF16FX我吓了
22、一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物连续型分布的直接抽样方法连续型分布的直接抽样方法 对于连续型分布,如果分布函数F(x) 的反函数 F1(x)存在,则直接抽样方法是 :)(1 FXF我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例3. 在在a,b上均匀分布的抽上均匀分布的抽样样 在a,b上均匀分布的分布函数为: 则 bxbxaabaxaxxF当当当10)()(abaXF我吓了一跳,蝎子是多么丑恶和恐怖的东西,
23、为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 由任意已知分布中抽取简单子样的方法还包括,挑选抽样方法,复合抽样方法,复合挑选抽样方法,替换抽样方法。圆内均匀分布抽样要用到挑选抽样方法,指数分布函数抽样要用到复合抽样方法,正态分布的抽样和分布的抽样要用到替换抽样方法等。每种方法各有其优缺点和使用范围。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 常用概率分布的抽样公式 ab a r 1216iirlnr,01,1c aab a c arrb ac abb
24、 a b crrb a 1()aba r12() ( )f a b arf mr 112b ra smrs 分布名称抽样公式注a,b均匀分布指数分布正态分布三角分布a,b,c为三角分布的参数分布r,s为函数参数我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 三角分布 三角形概率分布是一种应用较广连续型概率分布,它是一种3点估计: 特别适用于对那些风险变量缺乏历史统计资料和数据,但可以经过咨询专家意见,得出各参数变量的最乐观值( a) ,最可能出现的中间值( b)以及最悲观值(m ) ,这3个估计值( a,
25、b, m )构成一个三角形分布。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 实际上,Matlab软件为我们提供了一种简单快捷的产生各种常用分布随机数的方法。其功能和特点: (1)界面友好,编程效率高。 (2)功能强大,可扩展性强。 (3)强大的数值计算功能和符号计算功能。 (4)图形功能灵活方便。 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 Matlab常用的随机数产生函数函数名调用形式函数注释betarnd
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蒙特卡洛 模拟 方法 ppt 课件
限制150内