直线和平面平行的判定定理--好ppt课件.ppt
《直线和平面平行的判定定理--好ppt课件.ppt》由会员分享,可在线阅读,更多相关《直线和平面平行的判定定理--好ppt课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。牟平育英中学牟平育英中学 周维红周维红有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 直线与平面有几种位置关系?直线与平面有几种位置关系? 其中平行是一种非常重要的关系,不仅应用较其中平行是一种非常重要的关系,不仅应用较多,而且是学习平面和平面平行的基础多,而且是学习平面和平面平行的基础 有三种位置关系:在平面内,相交、平有三种位置关系:在平面内,相交、平行行
2、a a =Aa a 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 怎样判定直线怎样判定直线与平面平行呢?与平面平行呢? 根据定义,判定直线与平面是否平行,只需判根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点但是,直线无限延长,定直线与平面有没有公共点但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?平面无限延展,如何保证直线与平面没有公共点呢?a有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放
3、又相互信任的合作环境。 在生活中,注意到门扇的两边是平行的当门扇在生活中,注意到门扇的两边是平行的当门扇绕着一边转动时,另一边始终与门框所在的平面没有绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象以平行的印象有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。将课本的一边将课本的一边AB紧靠桌面,并绕紧靠桌面,并绕AB转动,观察转动,观察AB的对边的对边CD在各个位置时,是不是都与桌面所在的平在各个位置
4、时,是不是都与桌面所在的平面平行?面平行?从中你能得出什么结论?从中你能得出什么结论?A AB BC CD DCD是桌面外一条直线是桌面外一条直线, AB是桌面内一条是桌面内一条直线,直线, CD AB ,则,则CD 桌面桌面直线直线AB、CD各有什么特点呢?各有什么特点呢?它们有什么关系呢?它们有什么关系呢?猜想猜想:如果平面外一条直线和这个平面内的一:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。条直线平行,那么这条直线和这个平面平行。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信
5、任的合作环境。直线和平面平行的判定定理直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线平行,那么这条直线和这个平面平行。 bab a ba a 注明:注明:1、定理三个条件缺一不可。、定理三个条件缺一不可。2、简记:、简记:线线线线平行,则平行,则线面线面平行。平行。3 3、定理告诉我们:、定理告诉我们:要证线面平行,只要在面内要证线面平行,只要在面内找一条线,使线线平行。找一条线,使线线平行。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,
6、依赖既开放又相互信任的合作环境。 1如图,长方体如图,长方体 中,中, DCBAABCDAABBCCDD(1)与)与AB平行的平面是平行的平面是 ;(2)与)与 平行的平面是平行的平面是 ;(3)与)与AD平行的平面是平行的平面是 ;AA 平面平面DCBADDCC平面平面DDCC平面平面平面平面CBCB平面平面DCBA平面平面CBCB有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。判断下列命题是否正确,若正确,请简述理判断下列命题是否正确,若正确,请简述理由,若不正确,请给出反例由,若不正确,请给出反
7、例. .( 1 )如果如果a、b是两条直线,且是两条直线,且ab,那么那么a 平行于经平行于经过过b的任何平面;的任何平面;( )(2)如果直线)如果直线a和平面和平面 满足满足a ,那么那么a 与与内的任内的任何直线平行何直线平行;( )(3)如果直线)如果直线a、b和平面和平面 满足满足a ,b ,那么那么a b ;( )( 4 )过平面外一点和这个平面平行的直线只有一过平面外一点和这个平面平行的直线只有一条条.( )有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。CABDA 例例1 1 求证:空
8、间四边形相邻两边中点的连线平求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面行于经过另外两边所在的平面 已知:空间四边形已知:空间四边形ABCD中,中,E,F分别分别AB,AD的中点的中点求证:求证:EF/平面平面BCD证明:连接证明:连接BD.因为因为 AE=EB,AF=FD,所以所以 EF/BD(三角形中位线的性质)(三角形中位线的性质)因为因为 BCDBDBCDEF平面平面,由直线与平面平行的判断定理得由直线与平面平行的判断定理得:EF/平面平面BCD.EF有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开
9、放又相互信任的合作环境。ABA BCDCD 2如图,正方体如图,正方体 中,中,E为为 的的中点,试判断中点,试判断 与平面与平面AEC的位置关系,并说明理的位置关系,并说明理由由DCBAABCDDD DB EO证明:连接证明:连接BD交交AC于点于点O,连接连接OE,在在DDB 中,中,E,O分别是分别是BDDD, 的中点的中点DBEO/ACEEO平面ACEBD平面AECBD平面/有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 两个全等的正方形两个全等的正方形ABCD、ABEF不在同不在同 一平面
10、内一平面内,M、N是对角线是对角线AC、BF的中点的中点求证:求证:MN 面面BCEDANMCBFE有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。PQ M、N 是是AC,BF上的点且上的点且AM=FN,求证:求证:MN 面面BCEDANMCBFE有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。DANMCBFEp有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企
11、业文化氛围,依赖既开放又相互信任的合作环境。已知:已知:P是平行四边形是平行四边形ABCD所在平面外一点,所在平面外一点,M为为PB的中点的中点. .求证:求证:PD/平面平面MAC. .APBCDMO有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1 1证明直线与平面平行的方法:证明直线与平面平行的方法:(1 1)利用定义;)利用定义;(2 2)利用判定定理)利用判定定理2 2数学思想方法:转化的思想数学思想方法:转化的思想空间问题空间问题平面问题平面问题线线平行线线平行线面平行线面平行直线与平面没
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 和平 平行 判定 定理 ppt 课件
限制150内