2022年高中数学排列组合经典题型全面总结版 .pdf
《2022年高中数学排列组合经典题型全面总结版 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学排列组合经典题型全面总结版 .pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 高中数学排列与组合一典型分类讲解一. 特殊元素和特殊位置优先策略例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解: 由于末位和首位有特殊要求, 应该优先安排 , 以免不合要求的元素占了这两个位置. 先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A练习题 :7 种不同的花种在排成一列的花盆里,假设两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例 2. 7人站成一排 , 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同
2、时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A种不同的排法乙甲丁丙练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有3 枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略例 3. 一个晚会的节目有4 个舞蹈 ,2 个相声 ,3 个独唱 , 舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解: 分两步进行第一步排2 个相声和 3 个独唱共有55A种,第二步将 4 舞蹈插入第一步排好的6 个元素中间包含首尾两个空位共有种46A不同的方法 , 由分步计数原理 , 节目的不同顺序共有5456A A种
3、练习题:某班新年联欢会原定的5 个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四. 定序问题倍缩空位插入策略例 4. 7人排队 , 其中甲乙丙 3 人顺序一定共有多少不同的排法解:( 倍缩法 ) 对于某几个元素顺序一定的排列问题, 可先把这几个元素与其他元素一起进行排列, 然后用总排列数除以这几个元素之间的全排列数, 则共有不同排法种数是:7373/AA( 空位法 ) 设想有 7 把椅子让除甲乙丙以外的四人就坐共有47A种方法,其余的三个位置甲乙丙共有 1 种坐法,则共有47A种方法。思考 : 可以先让甲乙丙就
4、坐吗? 插入法 ) 先排甲乙丙三个人, 共有 1 种排法 , 再把其余 4 四人依次插入共有方法练习题 :10 人身高各不相等 , 排成前后排,每排5 人, 要求从左至右身高逐渐增加,共有多少排法?510C五. 重排问题求幂策略例 5. 把 6 名实习生分配到7 个车间实习 ,共有多少种不同的分法解: 完成此事共分六步: 把第一名实习生分配到车间有 7 种分法 . 把第二名实习生分配到车间也有7 种分依此类推 , 由分步计数原理共有67种不同的排法练习题:1 某班新年联欢会原定的5 个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个节目插入原节目单中,那么不同插法的种数为 42 C1
5、4A34C13要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端定序问题可以用倍缩法,还可转化为占位插空模型处理允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为nm种精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 24 页2 2. 某 8 层大楼一楼电梯上来8 名
6、乘客人 , 他们到各自的一层下电梯, 下电梯的方法87六. 环排问题线排策略例 6. 8人围桌而坐 , 共有多少种坐法 ? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A并从此位置把圆形展成直线其余7 人共有8-1 !种排法即7!HFDCAABCDEABEGHGF练习题: 6 颗颜色不同的钻石,可穿成几种钻石圈 120 七. 多排问题直排策略例 7.8 人排成前后两排,每排 4 人,其中甲乙在前排, 丙在后排 ,共有多少排法解:8 人排前后两排 , 相当于 8 人坐 8 把椅子 , 可以把椅子排成一排. 个特殊元素有24A种, 再排后 4 个位置上的特殊元素丙有1
7、4A种, 其余的 5 人在 5 个位置上任意排列有55A种, 则共有215445A A A种前 排后 排练习题:有两排座位,前排11 个座位,后排12 个座位,现安排2 人就座规定前排中间的3 个座位不能坐,并且这2 人不左右相邻,那么不同排法的种数是 346 八. 排列组合混合问题先选后排策略例 8. 有 5 个不同的小球 , 装入 4 个不同的盒内 , 每盒至少装一个球, 共有多少不同的装法. 解:第一步从5 个球中选出2 个组成复合元共有25C种方法 .再把 4 个元素 ( 包含一个复合元素) 装入 4 个不同的盒内有44A种方法,根据分步计数原理装球的方法共有2454C A练习题:一个
8、班有6 名战士 ,其中正副班长各1 人现从中选4 人完成四种不同的任务, 每人完成一种任务, 且正副班长有且只有1人参加 , 则不同的选法有 192 种九. 小集团问题先整体后局部策略例 9. 用 1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 在两个奇数之间, 这样的五位数有多少个?解:把 , , , 当作一个小集团与排队共有22A种排法,再排小集团内部共有2222A A种排法,由分步计数原理共有222222A A A种排法 .15243练习题:. 计划展出 10 幅不同的画 ,其中 1 幅水彩画 , 幅油画 , 幅国画 , 排成一行陈列 , 要求同一品种的必须连在一起,
9、并且水彩画不在两端,那么共有陈列方式的种数为254254A A A2. 5 男生和女生站成一排照像, 男生相邻 , 女生也相邻的排法有255255A A A种十. 元素相同问题隔板策略例 10. 有 10个运发动名额,分给7 个班,每班至少一个, 有多少种分配方案?解:因为 10 个名额没有差异,把它们排成一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有69C种分法。一般地 ,n 个不同元素作圆形排列,共有 (n-1)! 种排法 .如果从 n 个不同元素中取出m 个元素作圆形排列共有1mnAn一般地 ,元素分成多排的排列
10、问题,可归结为一排考虑,再分段研究 . 解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 24 页3 一班二班三班四班五班六班七班练习题:1 10个相同的球装5 个盒中 , 每盒至少一有多少装法?49C2 .100 xyzw求这个方程组的自然数解的组数3103C十一 . 正难则反总体淘汰策略例 11. 从 0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10 的偶数 , 不同的取法有多少种?解:这问题中如果直接求不小于10 的偶数
11、很困难 , 可用总体淘汰法。 这十个数字中有5 个偶数 5 个奇数 , 所取的三个数含有3 个偶数的取法有35C,只含有1 个偶数的取法有1255C C, 和为偶数的取法共有123555C CC。再淘汰和小于10 的偶数共9种,符合条件的取法共有1235559C CC练习题:我们班里有43 位同学 , 从中任抽 5 人, 正、副班长、团支部书记至少有一人在内的抽法有多少种 ? 十二 . 平均分组问题除法策略例 12. 6本不同的书平均分成3 堆, 每堆 2 本共有多少分法?解: 分三步取书得222642C C C种方法 ,但这里出现重复计数的现象, 不妨记 6 本书为 ABCDEF ,假设第一
12、步取AB,第二步取 CD,第三步取 EF 该分法记为 (AB,CD,EF), 则222642C C C中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A种取法 , 而这些分法仅是 (AB,CD,EF) 一种分法 , 故共有22236423/C C CA种分法。练习题:1 将 13 个球队分成 3 组, 一组 5 个队 ,其它两组4 个队 , 有多少分法?544213842/C C CA2.10 名学生分成3 组, 其中一组4 人, 另两组 3 人但正副班长不能分在同一组, 有多少种不同的分组方法15403. 某校高二年级
13、共有六个班级,现从外地转入 4 名学生,要安排到该年级的两个班级且每班安排2 名,则不同的安排方案种数为_ 22224262/90C C AA十三 . 合理分类与分步策略例 13. 在一次演唱会上共10 名演员 ,其中 8 人能能唱歌 ,5 人会跳舞 , 现要演出一个2 人唱歌 2 人伴舞的节目 , 有多少选派方法解:10演员中有 5 人只会唱歌, 2 人只会跳舞 3 人为全能演员。选上唱歌人员为标准进行研究只会唱的5 人中没有人选上唱歌人员共有2233C C种, 只会唱的5 人中只有1 人选上唱歌人员112534C C C种, 只会唱的5 人中只有2 人选上唱歌人员有2255C C种,由分类
14、计数原理共有22112223353455C CC C CC C种。练习题:1. 从 4 名男生和 3 名女生中选出4 人参加某个座谈会,假设这4 人中必须既有男生又有女生,则不同的选法共有34 2. 3 成人 2 小孩乘船游玩 ,1 号船最多乘3 人, 2 号船最多乘2 人,3 号船只能乘1 人, 他们任选 2 只船或 3 只船 , 但小孩不能单独乘一只船 , 这 3 人共有多少乘船方法. 27此题还有如下分类标准:*以 3 个全能演员是否选上唱歌人员为标准*以 3 个全能演员是否选上跳舞人员为标准*以只会跳舞的2 人是否选上跳舞人员为标准都可经得到正确结果将 n 个相同的元素分成m 份 n,
15、m 为正整数 ,每份至少一个元素,可以用 m-1 块隔板,插入n 个元素排成一排的n-1 个空隙中,所有分法数为11mnC有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰 . 平均分成的组 ,不管它们的顺序如何,都是一种情况 ,所以分组后要一定要除以nnA(n为均分的组数 )防止重复计数。解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,
16、共 24 页4 十四 . 构造模型策略例 14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯 , 现要关掉其中的3 盏, 但不能关掉相邻的2 盏或 3 盏,也不能关掉两端的2盏, 求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6 盏亮灯的 5 个空隙中插入3 个不亮的灯有35C种练习题:某排共有10 个座位,假设4 人就坐,每人左右两边都有空位,那么不同的坐法有多少种?120十五 . 实际操作穷举策略例 15. 设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子 , 现将 5 个球投入这五个盒子内, 要求每个盒子放一个球,并且恰好有两个球的编号与
17、盒子的编号相同, 有多少投法解:从 5 个球中取出2 个与盒子对号有25C种还剩下 3 球 3 盒序号不能对应,利用实际操作法,如果剩下3,4,5 号球 , 3,4,5号盒 3 号球装 4 号盒时,则 4,5 号球有只有1 种装法,同理 3 号球装 5 号盒时 ,4,5号球有也只有1 种装法 , 由分步计数原理有252C种5343 号盒 4号盒 5号盒练习题:1. 同一寝室 4 人, 每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9) 2. 给图中区域涂色,要求相邻区域不同色 , 现有 4 种可选颜色 ,则不同的着色方法有 72 种54321
18、十六 . 分解与合成策略例 16. 30030能被多少个不同的偶数整除分析:先把 30030 分解成质因数的乘积形式30030=235 7 1113,依题意可知偶因数必先取2, 再从其余 5 个因数中任取假设干个组成乘积,所有的偶因数为:1234555555CCCCC练习 :正方体的 8 个顶点可连成多少对异面直线解:我们先从8 个顶点中任取4 个顶点构成四体共有体共481258C, 每个四面体有3 对异面直线 , 正方体中的8 个顶点可连成3 58174对异面直线十七 . 化归策略例 17. 25人排成 55 方阵 ,现从中选 3 人,要求 3 人不在同一行也不在同一列, 不同的选法有多少种
19、?解: 将这个问题退化成9 人排成 33 方阵 , 现从中选 3 人,要求 3 人不在同一行也不在同一列, 有多少选法 . 这样每行必有1 人从其中的一行中选取1 人后 ,把这人所在的行列都划掉,如此继续下去. 从 33 方队中选 3 人的方法有111321C C C种。再从 55 方阵选出 33 方阵便可解决问题. 从 55 方队中选取3 行 3 列有3355C C选法所以从55 方阵选不在同一行也不在同一列的3 人有3311155321C C C C C选法。练习题 : 某城市的街区由12 个全等的矩形区组成其中实线表示马路,从A走到 B的最短路径有多少种?(3735C) BA十八 . 数
20、字排序问题查字典策略例 18由 0,1,2,3,4,5 六个数字可以组成多少个没有重复的比324105 大的数?一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构 ,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解
21、决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 24 页5 解:297221122334455AAAAAN练习 :用 0,1,2,3,4,5这六个数字组成没有重复的四位偶数, 将这些数字从小到大排列起来, 第 71 个数是 3140 十九 . 树图策略例 193人相互传球, 由甲开始发球, 并作为第一次传球, 经过5次传求后 , 球仍回到甲的手中, 则不同的传球方式有_ 10N练习 : 分别编有 1,2,3,4,5 号码的人与椅,其中i号人不坐i号椅54321,i的不同坐法有
22、多少种?44N二十 . 复杂分类问题表格策略例 20有红、黄、兰色的球各5 只, 分别标有 A、B、C、D、E五个字母 , 现从中取 5 只, 要求各字母均有且三色齐备, 则共有多少种不同的取法解: 二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解. 例 21. 七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 . 分析:因同一学生可以同时夺得n 项冠军,故学生可重复排列, 将七名学生看作7 家“店”,五项冠军看作5 名“客”,每个“客”有 7 种住宿法
23、,由乘法原理得75种. 排列组合易错题正误解析1 没有理解两个基本原理出错排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.例 1 从 6 台原装电脑和5 台组装电脑中任意选取5 台, 其中至少有原装与组装电脑各两台, 则不同的取法有种.误解:因为可以取2 台原装与 3 台组装电脑或是3 台原装与 2 台组装电脑,所以只有2 种取法 .错因分析: 误解的原因在于没有意识到“选取 2 台原装与 3 台组装电脑或是3 台原装与 2 台组装电脑” 是完成任务的两 “类”方法,每类方法中都还有不同的取法.正解: 由分析,完成第一类方法还可以分
24、成两步:第一步在原装电脑中任意选取2 台,有26C种方法;第二步是在组装电脑任意选取 3 台,有35C种方法,据乘法原理共有3526CC种方法 . 同理,完成第二类方法中有2536CC种方法 . 据加法原理完成 全部的选取过程共有3526CC3502536CC种方法 . 例 2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有种 .A34AB34C43D34C误解:把四个冠军,排在甲、乙、丙三个位置上,选A.正解: 四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3 种选取方法,由乘法原理共有433333种.说明:此题还有同学这样误解,甲乙丙夺冠均有四种情况,
25、由乘法原理得34.这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4 种夺冠可能 .2 判断不出是排列还是组合出错在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.例 3 有大小形状相同的3 个红色小球和5 个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8 个小球的全排列,所以共有88A种方法 .错因分析:误解中没有考虑3 个红色小球是完全相同的,5 个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解: 8 个小球排好后对应着8 个位置,题中的排法相当于在8 个位置中选出3 个位置给红球,剩下的位置给白球,由于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学排列组合经典题型全面总结版 2022 年高 数学 排列组合 经典 题型 全面 总结
限制150内