《2022年高中解析几何知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年高中解析几何知识点 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载解析几何知识点一、基本内容(一)直线的方程1、 直线的方程确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围2、两条直线的位置关系两条直线的夹角,当两直线的斜率k1,k2都存在且k1k2外注意到角公式与夹角公式的区别(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断但若直线斜率不存在,则必须用一般式的平行垂直条件来判断(二)圆的方程(1)圆的方程1、 掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的 )才能确定一个圆方程在求圆
2、方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点, 则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载2、 圆的标准方程为(xa)2+(yb)2r2;一般方程x2+y2+Dx+Ey +F=0,圆心坐标(,)22DE,半径为22142DEF。3、在圆 (xa)2+(yb)2r2,若满足 a2+b2 = r2条件时,能使圆过原点;满足a=0,r0 条件时,能使圆心在 y 轴上;满足br时,能使圆与x 轴相切;满足2abr条件时
3、,能使圆与x y0 相切;满足 |a|=|b|=r 条件时,圆与两坐标轴相切4、若圆以 A(x1,y1)B(x2,y2)为直径,则利用圆周上任一点P(x,y),1PAPBkk求出圆方程 (xx1)(xx2)+(yy1)(yy 2)0 (2) 直线与圆的位置关系在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用0, =0, 0,而用圆心到直线距离dr,d=r,dr,分别确定相关交相切,相离的位置关系涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方
4、程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; 建标(2)写出适合条件P的点 M 的集合P=M|P(M) ;设点(3)用坐标表示条件P(M),列出方程f(x,y)=0 列式(4)化方程f(x,y)=0 为最简方程化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程( 2)求曲线方程主要有四种方法:(1)条件直译法 :如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x,y”(或,)的等式
5、,我们称此为“直译法”(2)代入法 (或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载(3)几何法 :利用平面几何或解析几何的知识分析图形性质,发现动点运动规律(4)参数法 :有时很难直接找出动点的横纵坐标之间关系如果借助中间参量(参数 ),使x,y之间的关系建立起联系,然后再从所求式子中消去参数
6、,这便可得动点的轨迹方程(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于 |F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距 这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在( 2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关同时,还应注意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件
7、2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式1)范围: 焦点在x轴时,椭圆位于直线xa和yb所围成的矩形里2)对称性: 椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心椭圆的对称中心叫做椭圆中心3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(a,0)A2(a,0)B1(0,b)B2(0, b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b1e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载5)焦半径: 椭圆上任一点到焦点的距离为焦半径如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1a+ex06)|A1F1|=a-c|A1F1|=a+c 10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e1的点的轨迹精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页
限制150内