《插值与拟合ppt课件.ppt》由会员分享,可在线阅读,更多相关《插值与拟合ppt课件.ppt(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模教程数学建模教程西华大学数学与计算机学院 插插 值值拉格朗日插值拉格朗日插值分段线性插值分段线性插值三次样条插值三次样条插值一一 维维 插插 值值一、一、插值的定义插值的定义二、插值的方法二、插值的方法三、用三、用Matlab解插值问题解插值问题返回返回返回返回二维插值二维插值一、一、二维插值定义二维插值定义二、网格节点插值法二、网格节点插值法三、用三、用MatlabMatlab解插值问题解插值问题最邻近插值最邻近插值分片线性插值分片线性插值双线性插值双线性插值网格节点数据的插值网格节点数据的插值散点数据的插值散点数据的插值一维插值的定义一维插值的定义已知已知 n+1个节点个节点, 1
2、 , 0(),(njyxjj其中其中jx互不相同,不妨设互不相同,不妨设),10bxxxan求任一插值点求任一插值点)(*jxx 处的插值处的插值.*y0 x1xnx0y1y节点可视为由节点可视为由)( xgy 产生产生,,g表达式复杂表达式复杂,,或无封闭形式或无封闭形式,,或未知或未知.。*x*y 构造一个构造一个(相对简单的相对简单的)函数函数),(xfy 通过全部节点通过全部节点, 即即), 1 ,0()(njyxfjj再用再用)(xf计算插值,即计算插值,即).(*xfy 0 x1xnx0y1y*x*y返回返回 称为拉格朗日插值基函数拉格朗日插值基函数。n0iiiny)x(L)x(P
3、 已知函数f(x)在n+1个点x0,x1,xn处的函数值为 y0,y1,yn 。求一n次多项式函数Pn(x),使其满足: Pn(xi)=yi,i=0,1,n. 解决此问题的拉格朗日插值多项式公式如下其中Li(x) 为n次多项式:)xx()xx)(xx()xx)(xx()xx()xx)(xx()xx)(xx()x(Lni1ii1ii1i0in1i1i10i拉格朗日拉格朗日(Lagrange)插值插值拉格朗日拉格朗日(Lagrange)插值插值特别地特别地:两点一次两点一次(线性线性)插值多项式插值多项式: 101001011yxxxxyxxxxxL三点二次三点二次(抛物抛物)插值多项式插值多项式
4、: 2120210121012002010212yxxxxxxxxyxxxxxxxxyxxxxxxxxxL .,满足插值条件直接验证可知xLn 拉格朗日多项式插值的这种振荡现象叫 Runge现象现象55,11)(2xxxg 采用拉格朗日多项式插值:选取不同插值节点个数n+1,其中n为插值多项式的次数,当n分别取2,4,6,8,10时,绘出插值结果图形.例例返回返回To MatlabTo Matlablch(larg1)lch(larg1)分段线性插值分段线性插值其它,0,)()()(1111110jjjjjjjjjjjnjjjnxxxxxxxxxxxxxxxlxlyxLn越大,误差越小.nnn
5、xxxxgxL0),()(limxjxj-1xj+1x0 xnxoyTo MATLABxch11,xch12,xch13,xch14返回返回66,11)(2xxxg例例用分段线性插值法求插值用分段线性插值法求插值,并观察插值误差并观察插值误差.1.在在-6,6中平均选取中平均选取5个点作插值个点作插值(xch11)4.在在-6,6中平均选取中平均选取41个点作插值个点作插值(xch14)2.在在-6,6中平均选取中平均选取11个点作插值个点作插值(xch12)3.在在-6,6中平均选取中平均选取21个点作插值个点作插值(xch13)比分段线性插值更光滑。比分段线性插值更光滑。xyxi-1 xi
6、ab 在数学上,光滑程度的定量描述是:函数(曲线)的k阶导数存在且连续,则称该曲线具有k阶光滑性。 光滑性的阶次越高,则越光滑。是否存在较低次的分段多项式达到较高阶光滑性的方法?三次样条插值就是一个很好的例子。三次样条插值三次样条插值 三次样条插值, 1,),()(1nixxxxsxSiii,)()3), 1 ,0()()2), 1()()10223niiiiiiixxCxSniyxSnidxcxbxaxs) 1, 1()()(),()(),()(111 nixsxsxsxsxsxsiiiiiiiiiiii自然边界条件)(0)()()40 nxSxS)(,)4)3)2xSdcbaiiiig g
7、( (x x) )为被插值函数为被插值函数。)()(limxgxSn例例66,11)(2xxxg用三次样条插值选取用三次样条插值选取11个基点计算插值个基点计算插值(ych)返回返回To MATLABych用用MATLABMATLAB作插值计算作插值计算一维插值函数:一维插值函数:yi=interp1(x,y,xi,method)插值方法插值方法被插值点被插值点插值节点插值节点xixi处的插处的插值结果值结果nearest :最邻近插值:最邻近插值linear : 线性插值;线性插值;spline : 三次样条插三次样条插值;值;cubic : 立方插值。立方插值。缺省时:缺省时: 分段线性插
8、值。分段线性插值。注意:所有的插值方法都要求注意:所有的插值方法都要求x x是单调的,并且是单调的,并且xi不能够超过不能够超过x的范的范围。围。 例:在例:在1-121-12的的1111小时内,每隔小时内,每隔1 1小时测量一次小时测量一次温度,测得的温度依次为:温度,测得的温度依次为:5 5,8 8,9 9,1515,2525,2929,3131,3030,2222,2525,2727,2424。试估计每隔。试估计每隔1/101/10小时的小时的温度值。温度值。To MATLAB(temp)hours=1:12;temps=5 8 9 15 25 29 31 30 22 25 27 24;
9、h=1:0.1:12;t=interp1(hours,temps,h,spline); (直接输出数据将是很多的)plot(hours,temps,+)hold onplot(h,t,hours,temps,r:) %作图xlabel(Hour),ylabel(Degrees Celsius)xy机翼下轮廓线X035791 11 21 31 41 5Y01 . 21 . 72 . 02 . 12 . 01 . 81 . 21 . 01 . 6例例 已知飞机下轮廓线上数据如下,求已知飞机下轮廓线上数据如下,求x每改变每改变0.1时的时的y值。值。To MATLAB(plane)返回返回二维插值的
10、定义二维插值的定义 xyO O第一种(网格节点):第一种(网格节点): 已知已知 m n个节点个节点 ),2 , 1;,.,2 , 1(),(njmizyxijji 其中其中jiyx ,互不相同,不妨设互不相同,不妨设bxxxam 21dyyycn 21 构造一个二元函数构造一个二元函数),(yxfz 通过全部已知节点通过全部已知节点,即即再用再用),(yxf计算插值,即计算插值,即).,(*yxfz ),1 ,0;,1 ,0(),(njmizyxfijji 第二种(散乱节点):第二种(散乱节点): yx0 0已知已知n个节点个节点),.,2 , 1(),(nizyxiii 其中其中),(ii
11、yx互不相同,互不相同, 构造一个二元函数构造一个二元函数),(yxfz 通过全部已知节点通过全部已知节点,即即),1 ,0(),(nizyxfiii 再用再用),(yxf计算插值,即计算插值,即).,(*yxfz 返回返回 注意:注意:最邻近插值一般不连续。具有连续性的最简单的插值是分片线性插值。最邻近插值最邻近插值x y(x1, y1)(x1, y2)(x2, y1)(x2, y2)O O 二维或高维情形的最邻近插值,与被插值点最邻近的节点的函数值即为所求。返回返回 将四个插值点(矩形的四个顶点)处的函数值依次简记为: 分片线性插值分片线性插值xy (xi, yj)(xi, yj+1)(x
12、i+1, yj)(xi+1, yj+1)O Of (xi, yj)=f1,f (xi+1, yj)=f2,f (xi+1, yj+1)=f3,f (xi, yj+1)=f4插值函数为:jii1ij1jy)xx(xxyyy)yy)(ff ()xx)(ff (f)y, x(fj23i121第二片(上三角形区域):(x, y)满足iii1ij1jy)xx(xxyyy插值函数为:)xx)(ff ()yy)(ff (f)y, x(fi43j141注意注意:(x, y)当然应该是在插值节点所形成的矩形区域内。显然,分片线性插值函数是连续的;分两片的函数表达式如下:第一片(下三角形区域): (x, y)满足
13、返回返回 双线性插值是一片一片的空间二次曲面构成。双线性插值函数的形式如下:)dcy)(bax()y, x(f其中有四个待定系数,利用该函数在矩形的四个顶点(插值节点)的函数值,得到四个代数方程,正好确定四个系数。双线性插值双线性插值x y(x1, y1)(x1, y2)(x2, y1)(x2, y2)O O返回返回 要求要求x0,y0 x0,y0单调;单调;x x,y y可取可取为矩阵,或为矩阵,或x x取取行向量,行向量,y y取为列向量,取为列向量,x,yx,y的值分别不能超出的值分别不能超出x0,y0 x0,y0的范围。的范围。z=interp2(x0,y0,z0,x,y,method
14、)被插值点插值方法用用MATLAB作网格节点数据的插值作网格节点数据的插值插值节点被插值点的函数值nearestnearest 最邻近插值最邻近插值linearlinear 双线性插值双线性插值cubiccubic 双三次插值双三次插值缺省时缺省时, , 双线性插值双线性插值例:测得平板表面例:测得平板表面3 3* *5 5网格点处的温度分别为:网格点处的温度分别为: 82 81 80 82 84 82 81 80 82 84 79 63 61 65 81 79 63 61 65 81 84 84 82 85 86 84 84 82 85 86 试作出平板表面的温度分布曲面试作出平板表面的温度
15、分布曲面z=f(x,y)z=f(x,y)的图形。的图形。输入以下命令:x=1:5;y=1:3;temps=82 81 80 82 84;79 63 61 65 81;84 84 82 85 86;mesh(x,y,temps)1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图.2以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值.再输入以下命令:xi=1:0.2:5;yi=1:0.2:3;zi=interp2(x,y,temps,xi,yi,cubic);mesh(xi,yi,zi)画出插值后的温度分布曲面图. To MATLAB(wendu)例例 山区地貌:山区地貌: 在某山区测得一
16、些地点的高程如下表。平面区域为在某山区测得一些地点的高程如下表。平面区域为 1200=x=4000,1200=y=3600)试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。 X Y12001600200024002800320036004000120011301250128012301040900500700160013201450142014001300700900850200013901500150014009001100106095024001500120011001350145012001150101028001500
17、120011001550160015501380107032001500155016001550160016001600155036001480150015501510143013001200980 通过此例对最近邻点插值、双线性插值方法和双三次插值方法的插值效果进行比较。To MATLAB (moutain)返回返回 插值函数插值函数griddata格式为格式为: cz =griddata(x,y,z,cx,cy,method)用用MATLABMATLAB作散点数据的插值计算作散点数据的插值计算 要求要求cxcx取行向量,取行向量,cycy取为列向量取为列向量。被插值点插值方法插值节点被插值
18、点的函数值nearestnearest 最邻近插值最邻近插值linearlinear 双线性插值双线性插值cubiccubic 双三次插值双三次插值v4- Matlab提供的插值方法提供的插值方法缺省时缺省时, , 双线性插值双线性插值 例例 在某海域测得一些点在某海域测得一些点(x,y)(x,y)处的水深处的水深z z由下由下表给出,船的吃水深度为表给出,船的吃水深度为5 5英尺,在矩形区域(英尺,在矩形区域(7575,200200)* *(-50-50,150150)里的哪些地方船要避免进入。)里的哪些地方船要避免进入。xyz129 140 103.5 88 185.5 195 1057.
19、5 141.5 23 147 22.5 137.5 85.54 8 6 8 6 8 8xyz157.5 107.5 77 81 162 162 117.5-6.5 -81 3 56.5 -66.5 84 -33.59 9 8 8 9 4 9 做海底曲面图三次插值法作二维插值在矩形区域. 3) 1( .150,50200,75. 2hd.1 输入插值基点数据To MATLAB hd1返回返回4.作出水深小于5的海域范围,即z=5的等高线.数学建模教程数学建模教程西华大学数学与计算机学院 拟拟 合合拟拟 合合2.2.拟合的基本原理拟合的基本原理1. 拟合问题引例拟合问题引例拟拟 合合 问问 题题
20、引引 例例 1 1温度温度t(0C) 20.5 32.7 51.0 73.0 95.7电阻电阻R( ) 765 826 873 942 1032已知热敏电阻数据:已知热敏电阻数据:求求60600C时的电阻时的电阻R。2040608010070080090010001100 设设 R=at+ba,b为待定系数为待定系数拟拟 合合 问问 题题 引引 例例 2 2 t (h) 0.25 0.5 1 1.5 2 3 4 6 8c ( g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01已知一室模型快速静脉注射下的血药浓度数据已知一室模型快速静脉
21、注射下的血药浓度数据(t=0注射注射300mg)求血药浓度随时间的变化规律求血药浓度随时间的变化规律c(t).作半对数坐标系作半对数坐标系(semilogy)下的图形下的图形为待定系数kcectckt,)(002468100101102MATLAB(aa1)曲曲 线线 拟拟 合合 问问 题题 的的 提提 法法已知一组(二维)数据,即平面上已知一组(二维)数据,即平面上 n个点个点(xi,yi) i=1,n, 寻求一个函数(曲线)寻求一个函数(曲线)y=f(x), 使使 f(x) 在某种准则下与所在某种准则下与所有数据点最为接近,即曲线拟合得最好。有数据点最为接近,即曲线拟合得最好。 +xyy=
22、f(x)(xi,yi)i i 为点为点(xi,yi) 与与曲线曲线 y=f(x) 的距离的距离拟合与插值的关系拟合与插值的关系 函数插值与曲线拟合都是要根据一组数据构造一个函数作函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同为近似,由于近似的要求不同,二者的数学方法上是完全不同的。的。 实例:实例:下面数据是某次实验所得,希望得到X和 f之间的关系?x124791 21 31 51 7f1 .53 .96 .611 .71 5 .61 8 .81 9 .62 0 .62 1 .1MATLAB(cn)问题:问题:给定一批数据点,需确定满足
23、特定要求的曲线或曲面解决方案:解决方案:若不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势,这就是数据拟合数据拟合,又称曲线拟合或曲面拟合。若要求所求曲线(面)通过所给所有数据点,就是插值问题插值问题;最临近插值、线性插值、样条插值与曲线拟合结果:最临近插值、线性插值、样条插值与曲线拟合结果:0246810121416180510152025已知数据点spline三次多项式插值0246810121416180510152025已知数据点linest三次多项式插值0246810121416180510152025已知数据点nearest三次多项式插值曲线拟合问题最常用的解法曲线拟
24、合问题最常用的解法线性最小二乘法的基本思路线性最小二乘法的基本思路第一步: :先选定一组函数先选定一组函数 r1(x), r2(x), rm(x), mn, 令令 f(x)=a1r1(x)+a2r2(x)+ +amrm(x) (1)其中其中 a1,a2, am 为待定系数。为待定系数。 第二步: 确定确定a1,a2, am 的准则(最小二乘准则):的准则(最小二乘准则):使使n个点个点(xi,yi) 与与曲线曲线 y=f(x) 的距离的距离 i 的平方和最小的平方和最小 。记记 )2()()(),(211211221iiknimkkininiiimyxrayxfaaaJ 问题归结为,求问题归结
25、为,求 a1,a2, am 使使 J(a1,a2, am) 最小。最小。线性最小二乘法的求解:预备知识线性最小二乘法的求解:预备知识超定方程组超定方程组:方程个数大于未知量个数的方程组:方程个数大于未知量个数的方程组)( 221111212111mnyarararyarararnmnmnnmm即即 Ra=ynmnmnnmyyyaaarrrrrrR112111211,其中其中超定方程一般是不存在解的矛盾方程组。超定方程一般是不存在解的矛盾方程组。 如果有向量如果有向量a使得使得 达到最小,达到最小,则称则称a为上述为上述超定方程的最小二乘解超定方程的最小二乘解。 212211)(imniimii
26、yararar线性最小二乘法的求解线性最小二乘法的求解 定理:定理:当当R RT TR R可逆时,超定方程组(可逆时,超定方程组(3 3)存在最小二乘解,)存在最小二乘解,且即为方程组且即为方程组 R RT TRa=RRa=RT Ty y的解:的解:a=(Ra=(RT TR)R)-1-1R RT Ty y 所以,曲线拟合的最小二乘法要解决的问题,实际上就是所以,曲线拟合的最小二乘法要解决的问题,实际上就是求以下超定方程组的最小二乘解的问题。求以下超定方程组的最小二乘解的问题。nmnmnmyyyaaaxrxrxrxrR111111,)()()()(其中其中Ra=y (3)线性最小二乘拟合线性最小
27、二乘拟合 f(x)=a1r1(x)+ +amrm(x)中中函数函数rr1 1(x), (x), r rm m(x)(x)的选取的选取 1. 1. 通过机理分析建立数学模型来确定通过机理分析建立数学模型来确定 f(x)f(x);+f=a1+a2xf=a1+a2x+a3x2f=a1+a2x+a3x2f=a1+a2/xf=aebxf=ae-bx 2. 2. 将数据将数据 (xi,yi) i=1, n 作图,通过直观判断确定作图,通过直观判断确定 f(x):用用MATLAB解拟合问题解拟合问题1 1、线性最小二乘拟合、线性最小二乘拟合2 2、非线性最小二乘拟合、非线性最小二乘拟合用用MATLAB作线性
28、最小二乘拟合作线性最小二乘拟合1. 1. 作多项式作多项式f(x)=a1xm+ +amx+am+1拟合拟合, ,可利用已有程序可利用已有程序:a=polyfit(x,y,m)2. 2. 对超定方程组对超定方程组)(11nmyaRnmmn可得最小二乘意义下的解。可得最小二乘意义下的解。,用,用yRa3.3.多项式在多项式在x x处的值处的值y y可用以下命令计算:可用以下命令计算: y=polyvaly=polyval(a a,x x)输出拟合多项式系数输出拟合多项式系数a=a1, am , am+1 (数组数组) ))输入同长度输入同长度的数组的数组X,Y拟合多项拟合多项式次数式次数即要求即要
29、求 出二次多项式出二次多项式:3221)(axaxaxf中中 的的),(321aaaA 使得使得:最小 )(1112iiiyxf例例 对下面一组数据作二次多项式拟合对下面一组数据作二次多项式拟合xi0.10.20.40.50.60.70.80.91yi1.9783.286.167.347.669.589.489.3011.21)输入以下命令)输入以下命令:x=0:0.1:1; y=-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2; R=(x.2) x ones(11,1); A=Ry11 11211121xxxxR此时MATLA
30、B(zxec1)解法解法1 1用解超定方程的方法用解超定方程的方法2)计算结果)计算结果: = -9.8108 20.1293 -0.03170317.01293.208108.9)(2xxxf1)输入以下命令:)输入以下命令: x=0:0.1:1; y=-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2; A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,k+,x,z,r) %作出数据点和拟合曲线的图形作出数据点和拟合曲线的图形2)计算结果:)计算结果: = -9.8108 20.1293 -0
31、.0317解法解法2用多项式拟合的命令用多项式拟合的命令MATLAB(zxec2)00.20.40.60.81-20246810120317.01293.208108.9)(2xxxf1. lsqcurvefit1. lsqcurvefit已知数据点数据点: xdata=xdata=(xdata1,xdata2,xdataxdatan n),), ydata=ydata=(ydataydata1 1,ydataydata2 2,ydataydatan n) 用用MATLAB作非线性最小二乘拟合作非线性最小二乘拟合 Matlab Matlab的提供了两个求非线性最小二乘拟合的函数:的提供了两个求
32、非线性最小二乘拟合的函数:lsqcurvefitlsqcurvefit和lsqnonlinlsqnonlin。两个命令都要先建立。两个命令都要先建立M-M-文件文件fun.mfun.m,在其中定义函数在其中定义函数f(x)f(x),但两者定义,但两者定义f(x)f(x)的方式是不同的的方式是不同的, ,可参可参考例题考例题.最小 ),(21niiiydataxdataxF lsqcurvefitlsqcurvefit用以求含参量用以求含参量x x(向量)的向量值函数(向量)的向量值函数F(x,xdata)=F(x,xdata)=(F F(x x,xdataxdata1 1),),F F(x x
33、,xdataxdatan n)T T中的参变量中的参变量x(x(向量向量),),使得使得 输入格式为输入格式为: : (1) x = lsqcurvefit (fun,x0,xdata,ydata); (2) x =lsqcurvefit (fun,x0,xdata,ydata,options); (3) x = lsqcurvefit (fun,x0,xdata,ydata,options,grad); (4) x, options = lsqcurvefit (fun,x0,xdata,ydata,); (5) x, options,funval = lsqcurvefit (fun,x0
34、,xdata,ydata,); (6) x, options,funval, Jacob = lsqcurvefit (fun,x0,xdata,ydata,);fun是一个事先建立的是一个事先建立的定义函数定义函数F(x,xdata) 的的M-文件文件, 自变量为自变量为x和和xdata说明:x = lsqcurvefit (fun,x0,xdata,ydata,options);迭代初值迭代初值已知数据点已知数据点选项见无选项见无约束优化约束优化 lsqnonlin用以求含参量用以求含参量x x(向量)的向量值函数(向量)的向量值函数 f(x)f(x)=(f=(f1 1(x),f(x),f
35、2 2(x),(x),f,fn n(x)(x)T T 中的参量中的参量x x,使得,使得 最小。最小。 其中其中 fi(x)=f(x,xdatai,ydatai) =F(x,xdatai)-ydatai 22221)()()()()(xfxfxfxfxfnT2. lsqnonlin已知数据点:已知数据点: xdata=xdata=(xdata1,xdata2,xdataxdatan n) ydata=ydata=(ydataydata1 1,ydataydata2 2,ydataydatan n)输入格式为:输入格式为: 1) x=lsqnonlin(fun,x0); 2) x= lsqnon
36、lin (fun,x0,options); 3) x= lsqnonlin (fun,x0,options,grad); 4) x,options= lsqnonlin (fun,x0,); 5) x,options,funval= lsqnonlin (fun,x0,);说明:x= lsqnonlinlsqnonlin (fun,x0,options););fun是一个事先建立的是一个事先建立的定义函数定义函数f(x)的的M-文件,文件,自变量为自变量为x迭代初值迭代初值选项见无选项见无约束优化约束优化100200 30040050060070080090010004.54 4.99 5.3
37、5 5.65 5.90 6.10 6.26 6.39 6.50 6.59jt310jc210102. 0),(minjjktcbeakbaFj 例例2 用下面一组数据拟合用下面一组数据拟合 中的参数中的参数a,b,kktbeatc2 . 0 . 0)(该问题即解最优化问题:该问题即解最优化问题:MATLAB(fzxec1) 1 1)编写)编写M-M-文件文件 curvefun1.mcurvefun1.m function f=curvefun1(x,tdata) f=x(1)+x(2)*exp(-0.02*x(3)*tdata) %其中其中 x(1)=a; x(2)=b;x(3)=k;2)输入
38、命令)输入命令tdata=100:100:1000tdata=100:100:1000cdata=cdata=1e-03* *4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59;6.50,6.59; x0=0.2,0.05,0.05; x0=0.2,0.05,0.05; x=lsqcurvefit (curvefun1,x0,tdata,cdata)x=lsqcurvefit (curvefun1,x0,tdata,cdata) f= f= curvefun1(x,t
39、data) F(x,tdata)= ,x=(a,b,k)Tktktbeabea),(10102. 002. 0解法解法1 1. 用命令用命令lsqcurvefitlsqcurvefit3 3)运算结果为)运算结果为:f =0.0043 0.0051 0.0056 0.0059 0.0061 f =0.0043 0.0051 0.0056 0.0059 0.0061 0.0062 0.0062 0.0063 0.0063 0.0063 0.0062 0.0062 0.0063 0.0063 0.0063 x = 0.0063 -0.0034 0.2542 x = 0.0063 -0.0034 0
40、.25424)结论)结论:a=0.0063, b=-0.0034, k=0.2542MATLAB(fzxec2)Tktktcbeacbea),(102. 0102. 0101 解法解法 2 用命令用命令lsqnonlin f(x)=F(x,tdata,ctada)= x=(a,b,k)1)编写编写M-M-文件文件 curvefun2.mcurvefun2.m function f=curvefun2(x) tdata=100:100:1000; cdata=1e-03*4.54,4.99,5.35,5.65,5.90, 6.10,6.26,6.39,6.50,6.59; f=x(1)+x(2)
41、*exp(-0.02*x(3)*tdata)- cdata2)输入命令)输入命令: x0=0.2,0.05,0.05;x=lsqnonlin(curvefun2,x0)f= curvefun2(x)函数函数curvefun2的自变量是的自变量是x,cdata和和tdata是已知参数,故应是已知参数,故应将将cdata tdata的值写在的值写在curvefun2.m中中3 3)运算结果为)运算结果为 f =1.0e-003 f =1.0e-003 * *(0.2322 -0.1243 -0.2495 -0.2413 (0.2322 -0.1243 -0.2495 -0.2413 -0.1668 -0.0724 0.0241 0.1159 0.2030 0.2792-0.1668 -0.0724 0.0241 0.1159 0.2030 0.2792 x =0.0063 -0.0034 0.2542 x =0.0063 -0.0034 0.2542可以看出可以看出,两个命令的计算结果是相同的两个命令的计算结果是相同的.4)结论)结论:即拟合得即拟合得a=0.0063 b=-0.0034 k=0.25420.0063 b=-0.0034 k=0.2542
限制150内