高考数学资料——5年高考题、3年模拟题分类汇编专题(7)导数部分.doc
《高考数学资料——5年高考题、3年模拟题分类汇编专题(7)导数部分.doc》由会员分享,可在线阅读,更多相关《高考数学资料——5年高考题、3年模拟题分类汇编专题(7)导数部分.doc(172页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考数学资料5年高考题、3年模拟题分类汇编专题(7)导数部分第三章 导数及其应用第三章 导数及其应用第一部分 五年高考荟萃一、选择题1.(2009年广东卷文)函数的单调递增区间是( )A. B.(0,3) C.(1,4) D. 2.(2009全国卷理) 已知直线y=x+1与曲线相切,则的值为( ) 3.(2009安徽卷理)已知函数在R上满足,则曲线在点处的切线方程是
2、( )A. B. C. D. 答案 A解析 由得几何,即,切线方程,即选A4.(2009江西卷文)若存在过点的直线与曲线和都相切,则等于( ) A或 B或 C或 D或答案 A解析 设过的直线与相切于点,所以切线方程为即,又在切线上,则或,当时,由与相切可得,当时,由与相切可得,所以选.5.(2009江西卷理)设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为( )ABCD答案 A解析 由已知,而,所以故选A力。6.(2009全国卷理)曲线在点处的切线方程为 ( ) A. B. C. D. 答案 B解 ,故切线方程为,即 故选B.7.(2009湖南卷文)若函数的导函数在区间上是增函数,则函
3、数在区间上的图象可能是( )yababaoxoxybaoxyoxybA B C D8.(2009辽宁卷理)若满足2x+=5, 满足2x+2(x1)=5, +( )A. B.3 C. D.4答案 C解析 由题意 所以, 即2 令2x172t,代入上式得72t2log2(2t2)22log2(t1) 52t2log2(t1)与式比较得tx2 于是2x172x29.(2009天津卷理)设函数则( )A在区间内均有零点。 B在区间内均无零点。C在区间内有零点,在区间内无零点。D在区间内无零点,在区间内有零点。 【考点定位】本小考查导数的应用,基础题。解析 由题得,令得;令得;得,故知函数在区间上为减函
4、数,在区间为增函数,在点处有极小值;又,故选择D。二、填空题10.(2009辽宁卷文)若函数在处取极值,则 解析 f(x) f(1)0 a3答案 311.若曲线存在垂直于轴的切线,则实数的取值范围是 .解析 解析 由题意该函数的定义域,由。因为存在垂直于轴的切线,故此时斜率为,问题转化为范围内导函数存在零点。解法1 (图像法)再将之转化为与存在交点。当不符合题意,当时,如图1,数形结合可得显然没有交点,当如图2,此时正好有一个交点,故有应填或是。解法2 (分离变量法)上述也可等价于方程在内有解,显然可得12.(2009江苏卷)函数的单调减区间为 . 解析 考查利用导数判断函数的单调性。 ,由得
5、单调减区间为。亦可填写闭区间或半开半闭区间。13.(2009江苏卷)在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 . 解析 考查导数的几何意义和计算能力。 ,又点P在第二象限内,点P的坐标为(-2,15)答案 : 【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.14.(2009福建卷理)若曲线存在垂直于轴的切线,则实数取值范围是_.答案 解析 由题意可知,又因为存在垂直于轴的切线,所以。15.(2009陕西卷理)设曲线在点(1,1)处的切线与x轴的交点
6、的横坐标为,令,则的值为 . 答案 -216.(2009四川卷文)设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:设是平面上的线性变换,则 若是平面上的单位向量,对,则是平面上的线性变换; 对,则是平面上的线性变换; 设是平面上的线性变换,则对任意实数均有。其中的真命题是 (写出所有真命题的编号)答案 解析 :令,则故是真命题同理,:令,则故是真命题:,则有是线性变换,故是真命题:由,则有是单位向量,0,故是假命题【备考提示】本小题主要考查函数,对应及高等数学线性变换的相关知识,试题立意新颖,突出创新能力和数学阅读能力,
7、具有选拔性质。17.(2009宁夏海南卷文)曲线在点(0,1)处的切线方程为 。答案 解析 ,斜率k3,所以,y13x,即三、解答题18.(2009全国卷理)本小题满分12分。(注意:在试题卷上作答无效)设函数在两个极值点,且(I)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;(II)证明:分析(I)这一问主要考查了二次函数根的分布及线性规划作可行域的能力。大部分考生有思路并能够得分。由题意知方程有两个根则有故有 右图中阴影部分即是满足这些条件的点的区域。(II)这一问考生不易得分,有一定的区分度。主要原因是含字母较多,不易找到突破口。此题主要利用消元的手段,消去目标中的
8、,(如果消会较繁琐)再利用的范围,并借助(I)中的约束条件得进而求解,有较强的技巧性。解析 由题意有又消去可得又,且 19.(2009浙江文)(本题满分15分)已知函数 (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; (II)若函数在区间上不单调,求的取值范围解析 ()由题意得 又 ,解得,或 ()函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数 即函数在上存在零点,根据零点存在定理,有 , 即: 整理得:,解得20.(2009北京文)(本小题共14分)设函数.()若曲线在点处与直线相切,求的值;()求函数的单调区间与极值点.解析 本题主要考查利用导数研
9、究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(),曲线在点处与直线相切,(),当时,函数在上单调递增,此时函数没有极值点.当时,由,当时,函数单调递增,当时,函数单调递减,当时,函数单调递增,此时是的极大值点,是的极小值点.21.(2009北京理)(本小题共13分)设函数()求曲线在点处的切线方程;()求函数的单调区间;()若函数在区间内单调递增,求的取值范围. 解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(),曲线在点处的切线方程为.()由,得, 若,则当时,函数单调递减,当时,函数单调递增, 若,则当时,函数单
10、调递增, 当时,函数单调递减,()由()知,若,则当且仅当,即时,函数内单调递增,若,则当且仅当,即时,函数内单调递增,综上可知,函数内单调递增时,的取值范围是.22.(2009山东卷文)(本小题满分12分)已知函数,其中 (1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.解: (1)由已知得,令,得,要取得极值,方程必须有解,所以,即, 此时方程的根为,所以 当时,x(-,x1)x 1(x1,x2)x2(x2,+)f(x)00f (x)增函数极大值减函数极小值增函数所以在x 1, x2处分别取得极大值和极小值.当时, x(-,x2)x 2(x2,x1)x
11、1(x1,+)f(x)00f (x)减函数极小值增函数极大值减函数所以在x 1, x2处分别取得极大值和极小值.综上,当满足时, 取得极值. (2)要使在区间上单调递增,需使在上恒成立.即恒成立, 所以设,令得或(舍去), 当时,当时,单调增函数;当时,单调减函数,所以当时,取得最大,最大值为.所以当时,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以综上,当时, ; 当时, 【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思
12、想和分类讨论的思想解答问题.22.设函数,其中常数a1()讨论f(x)的单调性;()若当x0时,f(x)0恒成立,求a的取值范围。 解析 本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。解析 (I) 由知,当时,故在区间是增函数;当时,故在区间是减函数; 当时,故在区间是增函数。 综上,当时,在区间和是增函数,在区间是减函数。 (II)由(I)知,当时,在或处取得最小值。由假设知 即 解得 1a6故的取值范围是(1,6)23.(2009广东卷理)(本小题满分
13、14分)已知二次函数的导函数的图像与直线平行,且在处取得极小值设(1)若曲线上的点到点的距离的最小值为,求的值;(2)如何取值时,函数存在零点,并求出零点 解析 (1)依题可设 (),则; 又的图像与直线平行 , , 设,则 当且仅当时,取得最小值,即取得最小值当时, 解得 当时, 解得 (2)由(),得 当时,方程有一解,函数有一零点;当时,方程有二解,若,函数有两个零点,即;若,函数有两个零点,即;当时,方程有一解, , 函数有一零点 综上,当时, 函数有一零点;当(),或()时,函数有两个零点;当时,函数有一零点.24.(2009安徽卷理)(本小题满分12分) 已知函数,讨论的单调性.本
14、小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。本小题满分12分。解析 的定义域是(0,+), 设,二次方程的判别式. 当,即时,对一切都有,此时在上是增函数。当,即时,仅对有,对其余的都有,此时在上也是增函数。 当,即时,方程有两个不同的实根,.+0_0+单调递增极大单调递减极小单调递增此时在上单调递增, 在是上单调递减, 在上单调递增.25.(2009安徽卷文)(本小题满分14分) 已知函数,a0, ()讨论的单调性; ()设a=3,求在区间1,上值域。期中e=2.71828是自然对数的底数。【思路】由求导可判断得单调性,同时要注意对参数的
15、讨论,即不能漏掉,也不能重复。第二问就根据第一问中所涉及到的单调性来求函数在上的值域。解析 (1)由于令 当,即时, 恒成立.在(,0)及(0,)上都是增函数.当,即时 由得或 或或又由得综上当时, 在上都是增函数.当时, 在上是减函数, 在上都是增函数.(2)当时,由(1)知在上是减函数.在上是增函数.又 函数在上的值域为 26.(2009江西卷文)(本小题满分12分)设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 解析 (1) , 因为, 即 恒成立, 所以 , 得,即的最大值为 (2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值
16、 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或.27.(2009江西卷理)(本小题满分12分)设函数(1)求函数的单调区间; (1)若,求不等式的解集解析 (1), 由,得 .因为 当时,; 当时,; 当时,;所以的单调增区间是:; 单调减区间是: .(2)由 , 得:. 故:当 时, 解集是:;当 时,解集是: ;当 时, 解集是:. 28.(2009天津卷文)(本小题满分12分)设函数()当曲线处的切线斜率()求函数的单调区间与极值;()已知函数有三个互不相同的零点0,且。若对任意的,恒成立,求m的取值范围。答案 (1)1(2)在和内减函数,在内增函数。函数在处取得极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 资料 年高 考题 模拟 分类 汇编 专题 导数 部分
限制150内