珍藏初中数学二次函数教案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《珍藏初中数学二次函数教案.doc》由会员分享,可在线阅读,更多相关《珍藏初中数学二次函数教案.doc(146页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date珍藏初中数学二次函数教案66.1二次函数(1)教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x
2、的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)12面积y(m2)48 2x的值是否可以任意取?有限定范围吗? 3我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最
3、大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 x 10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(202x)(0 x 10)就是所求的函数关系式二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1商品的利润与售
4、价、进价以及销售量之间有什么关系? 利润=(售价进价)销售量 2如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? 108=2(元),(108)100=200(元) 3若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?(108x);(100100x) 4x的值是否可以任意取?如果不能任意取,请求出它的范围, x的值不能任意取,其范围是0x2 5若设该商品每天的利润为y元,求y与x的函数关系式。 y=(108x) (100100x)(0x2) 将函数关系式y=x(202x)(0 x 10化为: y=2x220x (0x10)(1) 将函数关系式y=(108x)(1
5、00100x)(0x2)化为: y=100x2100x20D (0x2)(2) 三、观察;概括 1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式2x220和100x2100x200分别是几次多项式? (分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2二次函数定义:形如y=ax2bxc (a、b、c是常数
6、,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项四、课堂练习1.(口答)下列函数中,哪些是二次函数? (1)y=5x1 (2)y=4x21 (3)y=2x33x2 (4)y=5x43x1 2P3练习第1,2题。五、小结 1请叙述二次函数的定义 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。六、作业:略6.2 二次函数的图象与性质(1)教学目标会用描点法画出二次函数的图象,概括出图象的特点及函数的性质教学过程新课引入我们已经知道,一次函数,反比例函数的图象分别是 、 ,那么二次函数的图象是什么呢?(1)描
7、点法画函数的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数的图象,你能得出什么结论?例题精讲例1在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)(2)解 列表x-3-2-10123188202818-18-8-20-2-8-18分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图2621共同点:都以y轴为对称轴,顶点都在坐标原点不同点:的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升的图象开口向下,顶点是抛物线的最高点,在对称轴的左边
8、,曲线自左向右上升;在对称轴的右边,曲线自左向右下降回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接例2已知是二次函数,且当时,y随x的增大而增大(1)求k的值;(2)求顶点坐标和对称轴解 (1)由题意,得, 解得k=2 (2)二次函数为,则顶点坐标为(0,0),对称轴为y轴例3已知正方形周长为Ccm,面积为S cm2(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm2时,正方形的周长;(3)根据图象,求出C取何值时,S4 cm2 分析 此题是二次函数实际应用问题,解这类问题时要
9、注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内解 (1)由题意,得列表:C246814描点、连线,图象如图2622(2)根据图象得S=1 cm2时,正方形的周长是4cm(3)根据图象得,当C8cm时,S4 cm2回顾与反思 (1)此图象原点处为空心点(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y(3)在自变量取值范围内,图象为抛物线的一部分当堂课内练习1在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标(1) (2) (3)2(1)函数的开口 ,对称轴是 ,顶点坐标是 ;(2)函数的开口 ,对称轴是 ,顶点坐标是 3已知等边三角形的
10、边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图62 二次函数的图象与性质(2)教学目标会画出这类函数的图象,通过比较,了解这类函数的性质教学过程例题精讲例1在同一直角坐标系中,画出函数与的图象解 列表x-3-2-1012318820281820104241020描点、连线,画出这两个函数的图象,如图2623所示回顾与反思 当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2在同一直角坐标系中,画出
11、函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线解 列表x-3-2-10123-8-3010-3-8-10-5-2-1-2-5-10描点、连线,画出这两个函数的图象,如图2624所示可以看出,抛物线是由抛物线向下平移两个单位得到的回顾与反思 抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的探索 如果要得到抛物线,应将抛物线作怎样的平移?回顾与反思 (a、k是常数,a0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标当堂课内练习1 在同一直角坐标系中,画出下列二次函数的图象:, , 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置你能
12、说出抛物线的开口方向及对称轴、顶点的位置吗?2抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的3函数,当x 时,函数值y随x的增大而减小当x 时,函数取得最 值,最 值y= 62 二次函数的图象与性质(3)教学目标会画出这类函数的图象,通过比较,了解这类函数的性质教学过程新课引入我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?例题精讲例1在同一直角坐标系中,画出下列函数的图象, ,并指出它们的开口方向、对称轴和顶点坐标解 列表x-3-2-10123202028820描点
13、、连线,画出这三个函数的图象,如图2625所示它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0)回顾与反思 对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最 值,最 值y= 探索 抛物线和抛物线分别是由抛物线向左、向右平移两个单位得到的如果要得到抛物线,应将抛物线作怎样的平移?例2不画出图象,你能说明抛物线与之间的关系吗?解 抛物线的顶点坐标为(0,0);抛物线的顶点坐标为(-2,0)因此,抛物线与形状相同,开口方向都向下,对称轴分别是y轴和直线抛物线是由向左平移2个单位
14、而得的回顾与反思 (a、h是常数,a0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标当堂课内练习1画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的2在同一直角坐标系中,画出下列函数的图象, ,并指出它们的开口方向、对称轴和顶点坐标62 二次函数的图象与性质(4)教学目标1掌握把抛物线平移至+k的规律;2会画出+k 这类函数的图象,通过比较,了解这类函数的性质教学过程新课引入由前面的知识,我们知道,函数的图象,向上平移2个单位,可以得到函数的图象;函数的图象,向右平移3个单位,可以得到函数的图象,那么函数的图象,如何平移,才能得
15、到函数的图象呢?例题精讲例1在同一直角坐标系中,画出下列函数的图象,并指出它们的开口方向、对称轴和顶点坐标解 列表x-3-2-10123202820260-20描点、连线,画出这三个函数的图象,如图2626所示它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 请同学们完成填空,并观察三个图象之间的关系回顾与反思 二次函数的图象的上下平移,只影响二次函数+k中k的值;左右平移,只影响h的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径此外,图象的平移与平移的顺序无关探索 你能说出函数+k(a、h、k是常数,a0)的图象的开口方向、
16、对称轴和顶点坐标吗?试填写下表+k开口方向对称轴顶点坐标例2把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b、c的值分析 把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,也就意味着把抛物线向下平移2个单位,再向右平移4个单位,得到抛物线那么,本题还可以用更简洁的方法来解,请你试一试当堂课内练习1将抛物线如何平移可得到抛物线 ( )A向左平移4个单位,再向上平移1个单位B向左平移4个单位,再向下平移1个单位C向右平移4个单位,再向上平移1个单位D向右平移4个单位,再向下平移1个单位2把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 3抛物线可由抛物
17、线向 平移 个单位,再向 平移 个单位而得到62 二次函数的图象与性质(5)教学目标1能通过配方把二次函数化成+k的形式,从而确定开口方向、对称轴和顶点坐标;2会利用对称性画出二次函数的图象教学过程新课引入我们已经发现,二次函数的图象,可以由函数的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数的开口 ,对称轴是 ,顶点坐标是 那么,对于任意一个二次函数,如,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?例题精讲例1通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图解 因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8)由对称性列表:
18、x-2-101234-1006860-10描点、连线,如图2627所示回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点探索 对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 例2已知抛物线的顶点在坐标轴上,求的值分析 顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y轴上,则顶点的横坐标等于0解 ,则抛物线的顶点坐标是当顶点在x轴上时,有 ,解得 当顶点在y轴上时,有 ,解得 或所
19、以,当抛物线的顶点在坐标轴上时,有三个值,分别是 2,4,8当堂课内练习1(1)二次函数的对称轴是 (2)二次函数的图象的顶点是 ,当x 时,y随x的增大而减小(3)抛物线的顶点横坐标是-2,则= 2抛物线的顶点是,则、c的值是多少?6.3用函数的观点看一元二次方程(1)教学目标: 1通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。 2使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。 3进一步培养学生综合解题能力,渗透数形结合思想。重点难点:重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 珍藏 初中 数学 二次 函数 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内