《扫描电子显微镜的综述.doc》由会员分享,可在线阅读,更多相关《扫描电子显微镜的综述.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除扫描电镜的综述及发展1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为15nm)的电子束(相应束流为10-1110-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会
2、产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像1。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。2 扫描电镜的特点(1) 能够直接观察样品表面的结构,样品的尺寸可大至120mm*80mm*5
3、0mm。(2) 样品的制备过程简单,不用切成薄片。(3) 样品可以在样品室中作三维空间的平移和旋转,因此可以从各种角度对样品进行观察。(4) 景深大,图像富有立体感,可直接观察各种试样凹凸不平表面的细微结构。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。(5) 图像的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。(6) 电子束对样品的损伤与污染程度较小。(7) 能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等)。(8) 在观察形貌的同时,还可利用从样品发出的其他信号做微区
4、成分及晶体学分析。传统扫面电镜的主体结构如图1所示2。 图1 传统扫描电镜的主体结构3 近代扫描显微镜的发展扫描电子显微镜早在1935年便已经被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的 努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。现在扫描电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。4 现代扫描电镜的发展近
5、代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体产业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词“环扫”,即环境扫描电镜。4
6、.1低电压扫描电镜在扫描电镜中,低电压是指电子束流加速电压在1kV左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边沿效应更加明显,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。4.2低真空扫描电镜低真空为是为了解决不导电试样分析的另一种工作模式。其关键技术是采用了一级压差光栏,实现了两级真空。发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,一般用1个机械泵和扩散泵来满足之。而样品室不一定要太高的真
7、空,可用另一个机械泵来实现样品室的低真空状态。当聚焦的电子束进进低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象,从而实现了对非导体样品自然状态的直接观察,在半导体、冶金、化工、矿产、陶瓷、生物等材料的分析工作方面有着比较突出的作用。4.3环境扫描电镜(ESEM)上述低真空扫描电镜样品室最高低真空压力为400Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到2600Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高
8、温或低温样品台联合使用则可模拟样品的四周环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。它是使用1个分子泵和2个机械泵,2个压差(压力限制)光栅将主体分成3个抽气区,镜筒处于高真空,样品四周为环境状态,样品室和镜筒之间存在一个缓冲过渡状态。使用时,高真空、低真空和环境3个模式可根据情况任意选择,并且在3种情况下都配有二次电子探测器,都能达到3.5nm的二次电子图像分辨率3。ESEM的特点是:(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;(2)可保证样
9、品在100%湿度下观察,即可进行含油含水样品的观察,能够观察液体在样品表面的蒸发和凝聚以及化学腐蚀行为;(3)可进行样品热模拟及力学模拟的动态变化实验研究,也可以研究微注进液体与样品的相互作用等。由于这些过程中有大量气体开释,只能在环扫状态下进行观察。环境扫描电镜技术拓展了电子显微学的研究领域,是扫描电子显微镜领域的一次重大技术革命,是研究材料热模拟、力学模拟、氧化腐蚀等过程的有力工具,受到了国内广大科研工作者的广泛关注,具有广阔的应用远景。5 高温样品台及动态拉伸装置的功能5.1高温样品台的功能利用高温台在环境模式下对样品进行加热并采集二次电子信号可进行适时动态观察。而在普通高真空扫描电镜和
10、低真空扫描电镜中,只能对极少数特殊样品在高温状态下进行观察,并要求在加热过程中不能产生气体、不能发出可见光和红外辐射,否则,会破坏电镜的真空,并且二次电子图像噪音严重,乃至根本无法成像。高温台配有专用陶瓷GSED(气体二次电子探头),可在环境模式下,在高达1500温度下正常观察样品的二次电子像。加热温度范围从室温到1500,升温速度每分钟1300。环境扫描电镜的专利探测器可保证在足够的成像电子采集时抑制热信号噪音,并对样品在高温加热时产生的光信号不敏感。而这些信号足以使其它型号扫描电镜中使用的普通二次电子探头和背散射电子探头无法正常工作。5.2动态拉伸装置的功能最新的动态拉伸装置配有内部马达驱
11、动器、旋转译码器、线性位移传感器,由计算机进行控制和数据采集,配合视频数据采集系统,可实现动态观察和记录。可从材料表面观察在动态拉伸条件下材料的滑移、塑性形变、起裂、裂纹扩展(路径和方向)直至断裂的全过程等。该装置还可附带3点弯曲和4点弯曲装置,具有弯曲功能,从而可以研究板材在弯曲状态下的形变、开裂直至断裂的情况。最大拉伸力为2000N,3点弯曲最大压力为660N。动态拉伸装置可配合多种扫描电镜工作4。6 扫描电镜的主要应用领域6.1 扫描电镜在材料和冶金行业中的应用场发射扫面电镜采用场致发射电子枪代替普通钨灯丝电子枪,可得到很高的二次电子像分辨率。采用场发射电子枪需要很高的真空度,在高真空度
12、下由于电子束的散射更小,其分辨率进一步得到提高。同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。场发射扫描电镜的特点是二次电子像分辨率很高,如果采用低加速电压技术,在TV状态下背散射电子(BSE)成像良好,对于未喷涂非导电样品也可得到高倍像。所以,场发射扫描电镜对半导体器件、精密陶瓷材料、氧化物材料等的发展起到很大作用。扫描电镜配备能谱仪,主要能分析材料表面微区的成分,分析方式有定点定性分析、定点定量分析、元素的线分布、元素的面分布。例如夹杂物的成分分析。两个相中元素的扩散深度、多相颗粒元素的分布情况。扫描电镜配备EBSD附件,主要做单晶体的物相分析,同时提供花样质量、置信度指数、彩
13、色晶粒图,可做单晶体的空间位向测定、两颗单晶体之间夹角的测定,可做特选取向图、共格晶界图、特殊晶界图,同时提供不同晶界类型的绝对数量和相对比例,还可做晶粒的尺寸分布图,将多颗单晶的空间取向投影到极图或反极图上,可做二维或三维织构分析5。扫描电镜配备波谱仪(即X射线波长色散谱仪),用作成分分析。成分分析的原理可用公式表示。是电子束激发试样时产生的X射线波长,跟元素有关;d是分光晶体的面间距,为已知数;R是波谱仪聚焦圆的半径,为已知数;L是X射线发射源与分光晶体之间的距离。对于不同的L则有不同的X射线波长,根据X射线波长就可得知是什么元素。扫描电子显微镜可以对浸出渣、铁的水解产物、转炉渣等物质进行
14、成分分析、形貌观察,可以对连铸坯的带状偏析及夹杂物进行分析。同时,也可以用于冶金辅材的显微组织及形貌分析与测量。如:冶金高炉塔垢显微组织分析,冶金烧结矿显微组织分析,保护渣渣皮形貌及渣皮厚度测量等。扫描电镜结合上述各种附件,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等等。6.2 扫描电镜在新型陶瓷材料显微分析中的应用显微结构的分析:在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便
15、、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用纳米尺寸的研究:纳米材料是纳米科学技术最基本的组成部分,现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等6,新
16、型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。铁电畴的观测:扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预
17、先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。6.3 扫描电子显徽镜在地质工作中的应用扫描电子显微镜主要通过对微体古生物、岩石、矿物的形态和结构构造特征的研究,岩石、矿物的元素组成、变化规律及其赋存状态的研究,解决地质科研和生产中的各种问题。它直接或间接应用于古生物学(主要是微体古生物)、矿物学、岩石学、陨石学、矿床学、构造地质学、矿床综合评价和矿产综合利用等方面的研究7。6.4扫描电镜在医学和生物学中的应用随着扫描电镜分辨力沟不断提高和样品制备技术的逐步改善,它在医学生物学的研究中
18、发挥了巨大乍用,具有重要约实用价值。特别是近年来,由于冷冻割断法、化学消化法以及树脂铸型法等新技术的创建,使人们在扫描电镜下可以直接观察组织细胞内部超微结构的立体图象,能够显示器官内微血管和其他管道系统在组织内的三维构筑,为医学生物学亚显微领域的深入探讨,提供了更为良好的条件8。7 总结目前,扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统,主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统,主要用于晶体和矿物的研究9。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如:显微热台和冷台系统,主要用于观察和分析在加热和冷冻过程中微观结构上的
19、变化;拉伸系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到了重要作用。参考文献:1陈世朴.金属电子显微分析M.北京:机械工业出版社,1992.2谈育煦.材料研究方法M.北京:机械工业出版社,2004,5.3吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用J,武钢技术,2005,43(6).4曹鹏,孙黎波,邵月华.扫面电镜对金属材料失效及表面缺陷的研究J,现代制造技术与装备,2010,1. 5宋敏华,激光扫描共焦显微镜在钢铁冶金行业中的应用J.机械工程材料,2007,02.6邓湘云,王晓慧,李龙土.扫描电子显微镜在新型陶瓷材料显微分析中的应用J.硅酸盐通报,2007,2:26-1.7白忠勤,刘伟明,邵月华.扫描电镜对高分子材料脆性断裂的研究J.Science& Technology Information,2010,13.8朱衍勇,董毅,司红,徐荣军.用SEM分析中厚钢板表面裂纹的成因J.电子显微学报,2000,19(4):543544.9张朝佑,王秀茹.扫描电镜在医学生物学中的应用J.广州解剖学通报,1990,12(2). 【精品文档】第 8 页
限制150内