数系的扩充与复数的概念(教学设计).doc
《数系的扩充与复数的概念(教学设计).doc》由会员分享,可在线阅读,更多相关《数系的扩充与复数的概念(教学设计).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date数系的扩充与复数的概念(教学设计)数系的扩充与复数的引入数系的扩充与复数的引入教学目标: 1. 知识与技能:了解数系扩充的必要性;理解虚数单位i的产生及意义2. 过程与方法:掌握复数的分类,理解虚数单位与实数进行四则运算的规律,复数与复数的运算规律。3. 情感、态度与价值观:从运动发展的眼光观察事物,体验数系的不断变化扩大教学重点:复数的概念,虚数单位i,复数的分类以
2、及复数在实际生活中的应用教学难点:虚数单位i的引进及复数的概念是本节课的教学难点,复数的概念是在引入虚数单位i并同时规定了它的两条性质之后得到的学情分析: 高二的学生在复数的概念以前,已经经历了实数从N、Z、Q、R的扩充过程,对数系扩充的过程方法、注意事项有一定的了解,因此在介绍新知识之前,可以先回顾一下以前是如何进行扩充的,然后给出新的问题,为什么现在又要进行扩充教学过程: 一、知识回顾及问题提出 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展
3、,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循
4、环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=1这样的方程还是无解的,因为没有一个实数的平方等于1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数设计意图: 1、通过对以前知识的回顾及对要解决问题的提出,使得数系的扩充变的很有必要 2、这个部分由学生先回顾,然后老师总结复述,学生整理二、 基本概念 1、虚数单位 (1) 它
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扩充 复数 概念 教学 设计
限制150内