新北师大版八年级数学[上册]勾股定理专题训练优质讲义.doc
《新北师大版八年级数学[上册]勾股定理专题训练优质讲义.doc》由会员分享,可在线阅读,更多相关《新北师大版八年级数学[上册]勾股定理专题训练优质讲义.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date新北师大版八年级数学上册勾股定理专题训练优质讲义新北师大版八年级数学上册勾股定理专题训练优质讲义勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。如果用字母a,b,c分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。2、勾股数:满足a+b=c的三个 ,称为勾股数。常见勾股数有:3、常见平方数:; ; ; ; ; ; ; ; ; ;
2、 ; ;专题归类:专题一、勾股定理与面积1、在RtABC中,C=,a=5,c=3.,则RtABC的面积S= 。2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。3、直线l上有三个正方形a、b、c,若a和c的面积分别为5和11,则b的面积为 labc4、在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4等于 。5、三条边分别是5,12,13的三角形的面积是 。6、如果一个三角形的三边长分别为a,b,c且满足:a+b+c+50=6a+8b+10c,则这个三角形的面积
3、为 。7、如图1,BC=8,AB=10,CD是斜边的高,求CD的长?BDCA图17、如下图,在ABC中,AB=8cm,BC=15cm,P是到ABC三边距离相等的点,求点P到ABC三边的距离。 8、有一块土地形状如图3所示,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。(添加辅助线构造直角三角形) DCBA图39、如右图:在四边形ABCD中,AB=2,CD=1,A=60,求四边形ABCD的面积。10、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C的位置上,已知AB=3,BC=7,求:重合部分EBD的面积11、如图,分别以直角三角形ABC三边为直径向外作三个半圆,其面积
4、分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.专题二、勾股定理与折叠1、如图4,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上册 北师大 八年 级数 勾股定理 专题 训练 优质 讲义
限制150内