经典小学1奥数题(带答案).doc
《经典小学1奥数题(带答案).doc》由会员分享,可在线阅读,更多相关《经典小学1奥数题(带答案).doc(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date经典小学1奥数题(带答案)1经典小学奥数题目1.一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。两张纸片重叠一部分放在左面上,覆盖桌面的面积为38平方厘米。问:两张纸片重合部分的面积是多少? 3*3*3.14+4*4-38=4.26平方厘米3.某班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体、音活动的有16人,同时
2、参加音、美活动的有15人同时参加体、美活动的有14人,三个组同时都参加的有5人。这个班共有多少名学生参加活动?25+26+24-16-14-15+5=35人 4.某校六年级举行语文和数学竞赛,参加人数占全年级总人数的百分之40.参加语文竞赛的占竞赛人数的五分之二,参加数学竞赛的占竞赛人数的四分之三,两项都参加的有12人。这个学校六年级共有多少人? 40%*2/5*X+40%*3/4*X-40%X=12 X=2005.某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这个班三项都会的至少有几人? 48+37+39-52*2=20人6.分母是385的最简真分数共有多少个?这些
3、真分数的和是多少? 385的最简真分数的个数240个,真分数的和是120 牛吃草问题例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量即原来的草的数量。因为总草量可以分成两部分:原有的草与新长出的草。新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃276=162(份),此时新草与原有的草均被吃完;23头牛9周需吃239=207(份),此时新草与原有的草也均被吃完。而162份是原有的草
4、的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)(9-6)=15(份),所以,原有草的数量为:162-156=72(份)。这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72(21-15)12(周)例2:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天。照此计算,可供多少头牛吃10天?与例1不同的是,不仅没有新长出的草,而且原有的草还在减少,但是,我们同样可以利用与例1类似的方法求出每天减少的草
5、和原来的草的总量。设1头牛1天吃的草为1份,20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷的天气使牧场1天减少青草10份,也就是寒冷导致的每天减少的草量相当于10头牛在吃草。由“草地上的草可供20头牛吃5天”,再加上寒冷导致的每天减少的草量相当于10头牛同时在吃草,所以原有草两有(20+10)5=150(份),由15010=15知道,牧场原有的草可供15头牛吃10天。由寒冷导致的原因占去10头牛吃的草,所以可供5头牛吃10天。例3:自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟
6、到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?与前两个题比较,“总的草量”变成了“扶梯的台阶总数”,“草”变成了“台阶”,“牛”变成了“速度”,也可以看成是牛吃草问题。上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。男孩5分钟走了205=100(级),女孩6分钟走了156=90(级),女孩比男孩少走了10090=10(级),多用了65=1(分钟),说明电梯1分钟走10级。因男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和。所以,扶梯共有(20+10)5=150(级)例题4:一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些
7、水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?已漏进的水,加上3小时漏进的水,每小时需要(123)人舀完,也就是36人用1小时才能舀完。已漏进的水,加上10小时漏进的水,每小时需要(510)人舀完,也就是50人用1小时才能舀完。通过比较,我们可以得出1小时内漏进的水及船中已漏进的水。1小时漏进的水,2个人用1小时能舀完:(510123)(103)=2已漏进的水:(122)3=30已漏进的水加上2小时漏进的水,需34人1小时完成:30+22=34用2小时来舀完这些水需要17人:342=17(人)例题5:有三块草地,面积分别为5,6,和8
8、公顷。草地上的草一样厚,而且长得一样快。第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块草地可供19头牛吃多少天?前几天我们接触的是在同一块草地上,同一个水池中,现在是三块面积不同的草地。为了解决这个问题,只需将三块草地的面积统一起来。即5,6,8=120这样,第一块5公顷可供11头牛吃10天,1205=24,变为120公顷草地可供1124=264(头)牛吃10天第二块6公顷可供12头牛吃14天,1206=20,变为120公顷草地可供1220=240(头)牛吃14天。1208=15。问题变成:120公顷草地可供1915=285(头)牛吃几天?因为草地面积相同,可忽略具
9、体公顷数,原题可变为:一块草地匀速生长,可供264头牛吃10天或供240头牛吃14天, 那么可供285头牛齿及天?即每天新长出的草:(2401426410)(1410)=180(份)草地原有草:(264180)10=840(份)可供285头牛吃的时间:840(285180)=8(天)答:第三块草地可供19头牛吃8天。 工程问题 1甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/169/80表示甲乙的工作效率 9/80545/80表示5小时后进水
10、量 1-45/8035/80表示还要的进水量 35/80(9/80-1/10)35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。 2修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/107/100,可知甲乙合作工效甲的工效乙的工效。 又因为,要求“两队合作的天数尽可能少
11、”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x1 x10 答:甲乙最短合作10天 3一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)29/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成
12、”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以19/101/10表示乙做6-42小时的工作量。 1/1021/20表示乙的工作效率。 11/2020小时表示乙单独完成需要20小时。 答:乙单独完成需要20小时。 4一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+1/甲1 1/乙+1/甲+1/乙+1/甲+1/乙+1/甲0.
13、51 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天) 1/甲1/乙+1/甲0.5(因为前面的工作量都相等) 得到1/甲1/乙2 又因为1/乙1/17 所以1/甲2/17,甲等于1728.5天 5师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个 120(4/52)300个 可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。 6一批
14、树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵 算式:1(1/6-1/10)15棵 7一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。 1(1/20+1/30)12 表示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进
15、的水。 1/2181/36 表示甲每分钟进水 最后就是1(1/20-1/36)45分钟。 8某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知: 乙做3天的工作量甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天 所以3(3-2)26天,就是甲的时间,也就是规定日期 方程方法: 1/x+1/(x+2
16、)2+1/(x+2)(x-2)1 解得x6 9两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。 解:设停电了x分钟 根据题意列方程 1-1/120*x(1-1/60*x)*2 解得x40 二鸡兔同笼问题 1鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解: 4*100400,400-0400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。 400-28372 实际鸡的
17、脚数比兔子的脚数只少28只,相差372只,这是为什么? 4+26 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+26只(也就是原来的相差数是400-0400,现在的相差数为396-2394,相差数少了400-3946) 372662 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-6238表示兔的只数 三数字数位问题 1把1至2005这2005个自然数依次写下来得到一个多位数123456789.2005,这个多位数除以
18、9余数是多少? 解: 首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。 解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:11999这些数的个位上的数字之和可以被9整除 1019,20299099这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+90=450 它有能被9整除 同样的道理,100900 百位上的数字之和为4500 同样被9整除 也就是说1999这些连续的自然数的各个位上的数字之和可以被9整除; 同样的道理:100019
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 小学 奥数题 答案
限制150内