线性代数期末考试试卷-答案合集详解.doc
《线性代数期末考试试卷-答案合集详解.doc》由会员分享,可在线阅读,更多相关《线性代数期末考试试卷-答案合集详解.doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date线性代数期末考试试卷-答案合集详解西南财经大学20012002学年第二学期大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题2分,共10分)1. 若,则_。2若齐次线性方程组只有零解,则应满足 。 3已知矩阵,满足,则与分别是 阶矩阵。4矩阵的行向量组线性 。5阶方阵满足,则 。二、判断正误(正确的在括号内填“”,错误的在括号内填“”。每小题2分,共1
2、0分)1. 若行列式中每个元素都大于零,则。( )2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组中,如果与对应的分量成比例,则向量组线性相关。( )4. ,则。( )5. 若为可逆矩阵的特征值,则的特征值为。 ( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设为阶矩阵,且,则( )。 42. 维向量组 (3 s n)线性无关的充要条件是( )。 中任意两个向量都线性无关 中存在一个向量不能用其余向量线性表示 中任一个向量都不能用其余向量线性表示 中不含零向量3. 下列命题中正确的是( )。 任意个维向量线性相关 任
3、意个维向量线性无关 任意个 维向量线性相关 任意个 维向量线性无关4. 设,均为n 阶方阵,下面结论正确的是( )。 若,均可逆,则可逆 若,均可逆,则 可逆 若可逆,则 可逆 若可逆,则 ,均可逆5. 若是线性方程组的基础解系,则是的( ) 解向量 基础解系 通解 A的行向量四、计算题 ( 每小题9分,共63分)1. 计算行列式。解2. 设,且 求。解. ,3. 设 且矩阵满足关系式 求。4. 问取何值时,下列向量组线性相关?。5. 为何值时,线性方程组有唯一解,无解和有无穷多解?当方程组有无穷多解时求其通解。 当且时,方程组有唯一解;当时方程组无解当时,有无穷多组解,通解为6. 设 求此向
4、量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。7. 设,求的特征值及对应的特征向量。五、证明题 (7分)若是阶方阵,且 证明 。其中为单位矩阵。大学线性代数期末考试题答案一、填空题1. 5 2. 3. 4. 相关 5. 二、判断正误1. 2. 3. 4. 5. 三、单项选择题1. 2. 3. 4. 5. 四、计算题1. 2. ,3. 4. 当或时,向量组线性相关。5. 当且时,方程组有唯一解;当时方程组无解当时,有无穷多组解,通解为6. 则 ,其中构成极大无关组,7. 特征值,对于11,特征向量为五、证明题, 一、选择题(本题共4小题,每小题4分,满分16分。每小题给出的四个选
5、项中,只有一项符合题目要求)1、设,为n阶方阵,满足等式,则必有( )(A)或; (B); (C)或; (D)。2、和均为阶矩阵,且,则必有( )(A) ; (B); (C) . (D) 。3、设为矩阵,齐次方程组仅有零解的充要条件是( )(A) 的列向量线性无关; (B) 的列向量线性相关;(C) 的行向量线性无关; (D) 的行向量线性相关.4、 阶矩阵为奇异矩阵的充要条件是( )(A) 的秩小于; (B) ;(C) 的特征值都等于零; (D) 的特征值都不等于零;二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵的行列式,是A的伴随矩阵,则= 。6、为阶矩阵,且,则 。7、已
6、知方程组无解,则 。8、二次型是正定的,则的取值范围是 。三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式10、计算阶行列式四、证明题(本题共2小题,每小题8分,满分16分。写出证明过程)11、若向量组线性相关,向量组线性无关。证明:(1) 能有线性表出;(2) 不能由线性表出。12、设是阶矩方阵,是阶单位矩阵,可逆,且。证明(1) ;(2) 。 五、解答题(本题共3小题,每小题12分,满分32分。解答应写出文字说明或演算步骤)13、设,求一个正交矩阵使得为对角矩阵。14、已知方程组与方程组有公共解。求的值。15、设四元非齐次线性方程组的系数矩阵的秩为3,已知,是它的三个解向量,
7、且,求该方程组的通解。解答和评分标准一、选择题1、C; 2、D; 3、A; 4、A。二、填空题5、-125; 6、; 7、-1; 8、。三、计算题9、解:第一行减第二行,第三行减第四行得:第二列减第一列,第四列减第三列得: (4分)按第一行展开得按第三列展开得。 (4分)10、解:把各列加到第一列,然后提取第一列的公因子,再通过行列式的变换化为上三角形行列式 (4分) (4分)四、证明题11、证明:(1)、 因为线性无关,所以线性无关。,又线性相关,故能由线性表出。 (4分),(2)、(反正法)若不,则能由线性表出,不妨设。由(1)知,能由线性表出,不妨设。所以,这表明线性相关,矛盾。 12、
8、证明 (1) (4分)(2)由(1)得:,代入上式得 (4分)五、解答题13、解:(1)由得的特征值为,。 (4分)(2)的特征向量为,的特征向量为,的特征向量为。 (3分)(3)因为特征值不相等,则正交。 (2分)(4)将单位化得, (2分)(5)取(6) (1分)14、解:该非齐次线性方程组对应的齐次方程组为因,则齐次线性方程组的基础解系有1个非零解构成,即任何一个非零解都是它的基础解系。 (5分)另一方面,记向量,则直接计算得,就是它的一个基础解系。根据非齐次线性方程组解的结构知,原方程组的通解为,。 (7分)15、解:将与联立得非齐次线性方程组: 若此非齐次线性方程组有解, 则与有公共
9、解, 且的解即为所求全部公共解. 对的增广矩阵作初等行变换得: . (4分)1当时,有,方程组有解, 即与有公共解, 其全部公共解即为的通解,此时,则方程组为齐次线性方程组,其基础解系为: ,所以与的全部公共解为,k为任意常数. (4分)2 当时,有,方程组有唯一解, 此时,故方程组的解为:, 即与有唯一公共解. (4分)线性代数习题和答案第一部分 选择题 (共28分)一、 单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。1.设行列式=m,=n,则行列式等于( ) A. m+nB. -(m+n)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 期末考试 试卷 答案 详解
限制150内