高一数学--对数函数综合练习题(答案).doc
《高一数学--对数函数综合练习题(答案).doc》由会员分享,可在线阅读,更多相关《高一数学--对数函数综合练习题(答案).doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高一数学-对数函数综合练习题(答案)对数的运算性质对数的运算性质1例题分析:例1用,表示下列各式: (2)(1); (2)解:(1);例2求下列各式的值:(1); (2) 解:(1)原式=;(2)原式=例3计算:(1)lg1421g; (2); (3)解:(1)解法一:;解法二:=;说明:本例体现了对数运算性质的灵活运用,运算性质常常逆用,应引起足够的重视。(2);(
2、3)=例4已知,求的值。分析:此题应注意已知条件中的真数2,3,与所求中的真数有内在联系,故应将1.44进行恰当变形:,然后应用对数的运算性质即可出现已知条件的形式。解: 说明:此题应强调注意已知与所求的内在联系。例5已知,求分析:由于是真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,的存在使变形产生困难,故可考虑将移到等式左端,或者将变为对数形式。解:(法一)由对数定义可知:(法二)由已知移项可得,即,由对数定义知:, (法三), 说明:此题有多种解法,体现了基本概念和运算性质的灵活运用,可以对于对数定义及运算性质的理解。1对数的运算性质:如果 a 0 , a 1, M
3、0 ,N 0, 那么(1);(2);(3)证明:(性质1)设,(性质3)设,由对数的定义可得 ,即证得 由对数的定义可得 ,即证得练习:证明性质2说明:(1)语言表达:“积的对数 = 对数的和”(简易表达以帮助记忆);(2)注意有时必须逆向运算:如 ;(3)注意定义域: 是不成立的, 是不成立的;(4)当心记忆错误:,试举反例, ,试举反例。例6(1)已知,用a表示;(2)已知,用、表示 解:(1), log 3 4 - log 3 6 = (2), , 又,=换底公式1换底公式: ( a 0 , a 1 ;)证明:设,则,两边取以为底的对数得:,从而得: , 说明:两个较为常用的推论:(1)
4、 ; (2) (、且均不为1)证明:(1) ;(2) 2例题分析:例1计算:(1) ; (2) 解:(1)原式 = ; (2) 原式 = 例2已知,求(用 a, b 表示)解:, , ,又, , 例3设 ,求证:证明:, , 例4若,求解:, , 又 , , 例5计算:解:原式 例6若 ,求解:由题意可得:, ,对数函数例1求下列函数的定义域:(1); (2); (3)分析:此题主要利用对数函数的定义域求解。解:(1)由0得,函数的定义域是;(2)由得,函数的定义域是;(3)由9-得-3,函数的定义域是说明:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2求函数和函数的反函数。解:
5、(1) ; (2) 例4比较下列各组数中两个值的大小: (1),; (2),; (3),.解:(1)对数函数在上是增函数,于是;(2)对数函数在上是减函数,于是;(3)当时,对数函数在上是增函数,于是, 当时,对数函数在上是减函数,于是例5比较下列比较下列各组数中两个值的大小:(1),; (2),; (3),; (4),解:(1), ,; (2), , (3), , , (4), 例6已知,比较,的大小。解:, ,当,时,得, 当,时,得, 当,时,得, 综上所述,的大小关系为或或例7求下列函数的值域:(1);(2);(3)(且)解:(1)令,则, , ,即函数值域为 (2)令,则, , 即函
6、数值域为 (3)令, 当时, 即值域为, 当时, 即值域为例8判断函数的奇偶性。解:恒成立,故的定义域为, ,所以,为奇函数。例9求函数的单调区间。解:令在上递增,在上递减,又, 或,故在上递增,在上递减, 又为减函数,所以,函数在上递增,在上递减。说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。例10若函数在区间上是增函数,的取值范围。解:令, 函数为减函数,在区间上递减,且满足,解得,所以,的取值范围为对数函数1 如图,曲线是对数函数 的图象,已知 的取值 ,则相应于曲线 的 值依次为( )(A) (B) (C) (D) 2.函数
7、y=logx1(3x)的定义域是 如果对数有意义,求x的取值范围;解:要使原函数有意义,则解之得: 原函数的定义域为-7,-6)(-6,-5) (-1,+)函数的定义域为一切实数,求k的取值范围。利用图像判断方程根的个数3已知关于的的方程,讨论的值来确定方程根的个数。解:因为在同一直角坐标系中作出函数与的图象,如图可知:当时,两个函数图象无公共点,所以原方程根的个数为0个;当时,两个函数图象有一个公共点,所以原方程根的个数为1个;当时,两个函数图象有两个公共点,所以原方程根的个数为2个。4若关于的方程的所有解都大于1,求的取值范围解:由原方程可化为,变形整理有(*),由于方程(*)的根为正根,
8、则解之得,从而5求函数的单调区间解:设,由得,知定义域为又,则当时,是减函数;当时,是增函数,而在上是减函数的单调增区间为,单调减区间为题目2】求函数的单调区间。正解】由得x1或x5,即函数的定义域为x| x1或x5,当x1时,是减函数,是减函数,所以是增函数;当x5时,是增函数,是减函数,所以是减函数;所以的增区间是(-,1);减区间是(5,)。6、设函数 ,若 的值域为 ,求实数 的取值范围分析:由值域为 和对数函数的单调性可将问题转化为 能取遍所有正实数的问题解: 令 ,依题意 应取遍一切正实数即函数值域是正实数集的子集则有 或 ,解得 已知函数f(x)=lg(a21)x2+(a+1)x
9、+1.(1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的值域为R,求实数a的取值范围.解:(1)(a21)x2+(a+1)x+10对xR恒成立.a21=0时,a=1,经检验a=1时恒成立;a210时, a1或a ,a1或a .(2)a21=0,即a=1时满足值域为R;a210时, 1a .1a .7的定义域为R,求a的取值范围。【正解】当a=0时,y=0,满足条件,即函数y=0的定义域为R;当a0时,由题意得:;由得a的取值范围为0,4)。【评注】参数问题,分类要不重不漏,对于不等式不一定是一元二次不等式。8.函数y=log(1x)(x+3)的递减区间是( )A.(3,1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 对数 函数 综合 练习题 答案
限制150内