高中数学完整讲义——空间向量与立体几何1.空间向量的基本定理与分解.docx
《高中数学完整讲义——空间向量与立体几何1.空间向量的基本定理与分解.docx》由会员分享,可在线阅读,更多相关《高中数学完整讲义——空间向量与立体几何1.空间向量的基本定理与分解.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学完整讲义空间向量与立体几何1.空间向量的基本定理与分解论文模板板块一.空间向量的基本定理与分解典例分析【例1】 关于空间向量的四个命题中正确的是( )A若,则、三点共线B若,则、四点共面C为直角三角形的充要条件是D若为空间的一个基底,则构成空间的另一个基底【例2】 在平行六面体中,下列四对向量:与;与;与;与其中互为相反向量的有对,则( )A B C D【例3
2、】 已知正方体中,若,则 , 【例4】 空间四边形中,点在上,且,为的中点,则 _(用向量来表示)【例5】 棱长为的正四面体中,的值等于 【例6】 已知空间四边形,点,分别为,的中点,且,用,表示,则_【例7】 平行六面体中,为和的交点,设,化简:;【例8】 设是空间不共面的四点,且满足,则( )A钝角三角形 B直角三角形C锐角三角形 D三种都有可能【例9】 已知空间四边形中,求证:【例10】 如图,在空间四面体中,、分别为边、的中点, 化简下列各表达式,并在图中标出化简结果的向量:;【例11】 已知和是非零向量,且=,求与的夹角【例12】 已知两个非零向量不共线,如果,求证:共面;【例13】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 完整 讲义 空间 向量 立体几何 基本 定理 分解
限制150内