王镜岩生物化学第三版笔记第八章 糖代谢.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《王镜岩生物化学第三版笔记第八章 糖代谢.doc》由会员分享,可在线阅读,更多相关《王镜岩生物化学第三版笔记第八章 糖代谢.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八章 糖代谢 自养生物 分解代谢 糖代谢包括 异养生物 自养生物 合成代谢 异养生物 能量转换(能源)糖代谢的生物学功能 物质转换(碳源)可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。分解代谢和合成代谢,受神经、激素、别构物调节控制。第一节 糖酵解 glycolysis一、 酵解与发酵1、 酵解 glycolysis (在细胞质中进行)酵解酶系统
2、将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。2、 发酵fermentation厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。O2葡萄糖 酵解丙酮酸 + NADH厌氧三羧酸循环乳酸发酵酒精发酵有些动物细胞即使在
3、有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。二、 糖酵解过程(EMP)Embden-Meyerhof Pathway ,1940在细胞质中进行1、 反应步骤P79 图 13-1 酵解途径,三个不可逆步骤是调节位点。(1)、 葡萄糖磷酸化形成G-6-P反应式此反应基本不可逆,调节位点。G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。催化此反应的激酶有,已糖激酶和葡萄糖激酶。激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。P 80 图13-2
4、己糖激酶与底物结合时的构象变化已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。(2)、 G
5、-6-P异构化为F-6-P 反应式:由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的断裂,形成三碳物是必需的。(3)、 F-6-P磷酸化,生成F-1.6-P反应式:此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶(4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)反应式:该反应在热力学上不利,但是,由于具有非常大的G0负值的F-1.6-2P的形成及后续甘油醛-3-磷
6、酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。该反应由醛缩酶催化,反应机理 P 83(5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛反应式:(注意碳原子编号的变化)由磷酸丙糖异构酶催化。已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P图解:(6)、 3-磷酸甘油醛氧化成1.3二磷酸甘油酸反应式:由磷酸甘油醛脱氢酶催化。此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。反应机理: P84 图 13-4 3-磷酸甘油醛脱氢酶的催化机理碘乙酸可与酶的-
7、SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)(7)、 13二磷酸甘油酸转化成3磷酸甘油酸和ATP反应式:由磷酸甘油酸激酶催化。这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。(8)、 3磷酸甘油酸转化成2磷酸甘油酸反应式:磷酸甘油酸变位酶催化,磷酰基从C3移至C2。(9)、 2磷酸甘油酸脱水生成磷酸烯醇式丙酮酸反应式:烯醇化酶2磷酸甘油酸中磷脂键是一个低能键(G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇
8、键是高能键(G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。(10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸。反应式:不可逆,调节位点。由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸EMP总反应式:1葡萄糖+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+2H+2H2O2、 糖酵解的能量变化 P87 图 13-5 糖酵解途径中ATP的生成无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。有氧条件下:NADH可通过呼吸链间接地被氧
9、化,生成更多的ATP。 1分子NADH3ATP 1分子FAD 2ATP因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(+*)。甘油磷酸穿梭:2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。:胞液中磷酸甘油脱氢酶。:线粒体磷酸甘油脱氢酶。 罗纪盛P 259 P 260。苹果酸穿梭机制:胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸2酮
10、戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。 图苹果酸脱氢酶(胞液)酮戊二酸转位酶苹果酸脱氢酶(线粒体基质)谷草转氨酶GluAsp转位酶谷草转氨酶草酰乙酸:苹果酸:酮戊二酸:3、 糖酵解中酶的反应类型P88 表13-1 糖酵解反应氧化还原酶(1种):3磷酸甘油醛脱氢酶转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶裂合酶(1种):
11、醛缩酶异构酶(4种):磷酸Glc异构酶、磷酸丙糖异构酶、磷酸甘油酸变位酶、烯醇化酶三、 糖酵解的调节参阅 P120 糖酵解的调节糖酵解过程有三步不可逆反应,分别由三个调节酶(别构酶)催化,调节主要就发生在三个部位。1、 已糖激酶调节别构抑制剂(负效应调节物):G6P和ATP别构激活剂(正效应调节物):ADP2、 磷酸果糖激酶调节(关键限速步骤)抑制剂:ATP、柠檬酸、脂肪酸和H+激活剂:AMP、F2.62PATP:细胞内含有丰富的ATP时,此酶几乎无活性。柠檬酸:高含量的柠檬酸是碳骨架过剩的信号。H+:可防止肌肉中形成过量乳酸而使血液酸中毒。3、 丙酮酸激酶调节抑制剂:乙酰CoA、长链脂肪酸、
12、Ala、ATP激活剂:F-1.6-P、四、 丙酮酸的去路1、 进入三羧酸循环2、 乳酸的生成在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。总反应: Glc + 2ADP + 2Pi 2乳酸 + 2ATP + 2H2O动物体内的乳酸循环 Cori 循环: 图肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。3、 乙醇的生成酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇
13、脱氢酶催化下,乙醛被NADH还原成乙醇。总反应:Glc+2pi+2ADP+2H+2乙醇+2CO2+2ATP+2H20在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。4、 丙酮酸进行糖异生五、 其它单糖进入糖酵解途径除葡萄糖外,其它单糖也可进行酵解P 91 图 13-6 各种单糖进入糖酵解的途径1糖原降解产物G1P2D果糖 有两个途径3D半乳糖4D甘露糖 第二节 三羧酸循环葡萄糖的有氧氧化包括四个阶段。糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH)丙酮酸氧化脱羧生成乙酰CoA三羧酸循环(CO2、H2O、ATP、NADH)呼吸链氧化磷酸化(NADH-ATP)
14、三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。原核生物:阶段在胞质中真核生物:在胞质中,在线粒体中一、 丙酮酸脱羧生成乙酰CoACH3COCOOH + CoA-SH + NAD+丙酮酸脱氢酶复合体CH3CO-S-CoA + NADH + H+ + CO21、 反应式:此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。2、 丙酮酸脱氢酶系丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。E.coli丙酮酸脱氢酶复合体:分子量:4.5106,直径45nm,比核糖体稍大。 酶 辅酶 每个复合
15、物亚基数丙酮酸脱羧酶(E1) TPP 24二氢硫辛酸转乙酰酶(E2) 硫辛酸 24二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12此外,还需要CoA、Mg2+作为辅因子这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。3、 反应步骤P 93 反应过程(1)丙酮酸脱羧形成羟乙基-TPP(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基(3)E2将乙酰基转给CoA,生成乙酰-CoA(4)
16、E3氧化E2上的还原型二氢硫辛酸(5)E3还原NAD+生成NADH4、 丙酮酸脱氢酶系的活性调节从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。(1)可逆磷酸化的共价调节丙酮酸脱氢酶激酶(EA)(可被ATP激活)丙酮酸脱氢酶磷酸酶(EB)磷酸化的丙酮酸脱氢酶(无活性)去磷酸化的丙酮酸脱氢酶(有活性)(2)别构调节ATP、CoA、NADH是别构抑制剂ATP抑制E1CoA抑制E2NADH抑制E35、 能量 1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。二、 三羧酸循环(TCA)的过程TCA循环:每轮循环有2个C原子以乙酰CoA形式进入
17、,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。1、 反应步骤P95 图13-9 概述三羧酸循环(1)、 乙酰CoA+草酰乙酸柠檬酸反应式:柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。柠檬酸合酶上的两个His残基起重要作用:一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。氟乙酰CoA可与草
18、酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。 图氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50 为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50小一个数量级。(2)、 柠檬酸异柠檬酸反应式:这是一个不对称反应,由顺鸟头酸酶催化P 101 图1312 顺乌头酸酶与柠檬酸的不对称结合顺乌头酸酶只能以两种旋光异构方式中的一种与柠檬酸结合,结果,它催化的第一步脱水反应中的氢全来自草酰乙酸部分,第二步的水合反应中的OH也只加在
19、草酰乙酸部分。这种酶与底物以特殊方式结合(只选择两种顺反异构或旋光异构中的一种结合方式)进行的反应称为不对称反应。结果,TCA第一轮循环释放的CO2全来自草酰乙酸部分,乙酰CoA羰基碳在第二轮循环中释放,甲基碳在第三轮循环中释放50%,以后每循环一轮释放余下的50%。柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。90%柠檬酸、4%顺乌头酸、6%异柠檬酸组成平衡混合物,但柠檬酸的形成及异柠檬酸的氧化都是放能反应,促使反应正向进行。(3)、 异柠檬酸氧化脱羧生成-酮戊二酸和NADH 反应式:这是三羧酸循环中第一次氧化脱羧反应,异
20、柠檬酸脱氢酶,TCA中第二个调节酶:Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。(4)、 -酮戊二酸氧化脱羧生成琥珀酰CoA和NADH反应式:-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢)(5)、 琥珀酰CoA生成琥珀酸和GTP反应式
21、:琥珀酰CoA合成酶(琥珀酸硫激酶)这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。(6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH反应式:琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。(7)、 延胡索酸水化生成L-苹果酸 反应式:延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。(8)、 L-苹果酸脱氢生成草酰乙酸和NADH 反应式:L-苹果酸脱氢酶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 王镜岩生物化学第三版笔记第八章 糖代谢 王镜岩 生物化学 第三 笔记 第八 代谢
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内